Change search
ReferencesLink to record
Permanent link

Direct link
Central-transition double-quantum sideband NMR spectroscopy of half-integer quadrupolar nuclei: estimating internuclear distances and probing clusters within multi-spin networks
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
2014 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 16, no 15, 7037-7050 p.Article in journal (Refereed) Published
Abstract [en]

We introduce a strategy to estimate the size of clusters of recoupled homonuclear half-integer quadrupolar nuclei under magic-angle spinning (MAS) conditions, by combining double-quantum (2Q) sideband NMR experiments with an approximate numerical analysis based on the summation of all spin-pairs present over a given radius of the structure. The experiment relies solely on the evolution of homonuclear 2Q coherences (2QC) among the central-transitions (CT) of half-integer spins and is suitable for probing clusters in network structures, such as those encountered in large groups of oxide-based materials. Experimental B-11, Na-23 and Al-27 NMR results are presented on bis(catecholato)diboron, Na2SO4 and Al2O3, respectively; in each case, the growth of the spin-cluster size was monitored from a series of experiments that employed progressively lengthened 2QC excitation intervals. Our new approach is the first option for probing larger constellations of half-integer spins; it provides similar information as the multiple-quantum spin counting experiment, which is well-established for spin-1/2 applications but has hitherto not been demonstrated for half-integer spins undergoing MAS. We also discuss various options for determining the internuclear distance within a (nearly) isolated pair of half-integer spins by comparing the experimental 2Q sideband NMR spectra with results from numerical simulations involving various degrees of approximation.

Place, publisher, year, edition, pages
2014. Vol. 16, no 15, 7037-7050 p.
National Category
Chemical Sciences
URN: urn:nbn:se:su:diva-102802DOI: 10.1039/c4cp00029cISI: 000333121300027OAI: diva2:713371


Available from: 2014-04-22 Created: 2014-04-22 Last updated: 2014-04-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Edén, Mattias
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 41 hits
ReferencesLink to record
Permanent link

Direct link