Change search
ReferencesLink to record
Permanent link

Direct link
Survival and tumour control probability in tumours with heterogeneous oxygenation: A comparison between the linear-quadratic and the universal survival curve models for high doses
Stockholm University, Faculty of Science, Department of Physics.
Stockholm University, Faculty of Science, Department of Physics. Karolinska Institutet, Sweden.ORCID iD: 0000-0002-7101-240X
2014 (English)In: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 53, no 8, 1035-1040 p.Article in journal (Refereed) Published
Abstract [en]

Background: The validity of the linear-quadratic (LQ) model at high doses has been questioned due to a decreasing agreement between predicted survival and experimental cell survival data. A frequently proposed alternative is the universal survival curve (USC) model, thought to provide a better fit in the high-dose region. The comparison between the predictions of the models has mostly been performed for uniform populations of cells with respect to sensitivity to radiation. This study aimed to compare the two models in terms of cell survival and tumour control probability (TCP) for cell populations with mixed sensitivities related to their oxygenation.

Methods: The study was performed in two parts. For the first part, cell survival curves were calculated with both models assuming various homogeneous populations of cells irradiated with uniform doses. For the second part, a realistic 3D-model of complex tumour oxygenation was used to study the impact of the differences in cell survival on the modelled tumour control probability. Cellular response was assessed with the LQ and USC models at voxel level and a Poisson TCP model at tumour level.

Results: For hypoxic tumours, the disputed continuous bend of the LQ survival curve was counteracted by the increased radio-resistance of the hypoxic cells and the survival curves started to diverge only at much higher doses than for oxic tumours. This was also reflected by the TCP curves for hypoxic tumours for which the difference in D50 values for the LQ and USC models was reduced from 5.4 to 0.2 Gy for 1 and 3 fractions respectively in a tumour with only 1.1% hypoxia and from 9.5 to 0.4 Gy in a tumour with 11.1% hypoxia.

Conclusions: For a large range of fractional doses including hypofractionated schemes, the difference in predicted survival and tumour control probability between the LQ and USC models for tumours with heterogeneous oxygenation was found to be negligible.

Place, publisher, year, edition, pages
2014. Vol. 53, no 8, 1035-1040 p.
National Category
Cancer and Oncology
URN: urn:nbn:se:su:diva-103440DOI: 10.3109/0284186X.2014.925582ISI: 000340892900007OAI: diva2:717736
Available from: 2014-05-16 Created: 2014-05-16 Last updated: 2015-08-04Bibliographically approved
In thesis
1. Searching for the optimal radiotherapy treatment time, dose and fractionation - the role of hypoxia and reoxygenation: A modelling study
Open this publication in new window or tab >>Searching for the optimal radiotherapy treatment time, dose and fractionation - the role of hypoxia and reoxygenation: A modelling study
2014 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The search for the optimal choice of treatment time, dose and fractionation regimen is one of the major challenges in radiation therapy. Several aspects of the radiation response of tumours and normal tissues give different indications of how the parameters defining a fractionation schedule should be altered relative to each other which often results in contradictory conclusions. For example, the increased sensitivity to fractionation in late-reacting as opposed to early-reacting tissues indicates that a large number of fractions is beneficial, while the issue of accelerated repopulation of tumour cells starting at about three weeks into a radiotherapy treatment would suggest as short overall treatment time as possible. Another tumour-to-normal tissue differential relevant to the sensitivity as well as the fractionation and overall treatment time is the issue of tumour hypoxia and reoxygenation.

The tumour oxygenation is one of the most influential factors impacting on the outcome of many types of treatment modalities. Hypoxic cells are up to three times as resistant to radiation as well oxygenated cells, presenting a significant obstacle to overcome in radiotherapy as solid tumours often contain hypoxic areas as a result of their poorly functioning vasculature. Furthermore, the oxygenation is highly dynamic, with changes being observed both from fraction to fraction and over a time period of weeks as a result of fast and slow reoxygenation of acute and chronic hypoxia. With an increasing number of patients treated with hypofractionated stereotactic body radiotherapy (SBRT), the clinical implications of a substantially reduced number of fractions and hence also treatment time thus have to be evaluated with respect to the oxygenation status of the tumour.

The perhaps most promising tool available for the type of study aiming at determining the optimal SBRT approach with respect to fractionation is radiobiological modelling. With clinically-derived tissue-specific radiobiological parameters and well-established survival models, in silico modelling offers a wide range of opportunities to test various hypotheses with respect to time, dose, fractionation and details of the tumour microenvironment. Any type of radiobiological modelling study intended to provide a realistic representation of a clinical tumour should therefore take into account details of both the spatial and temporal tumour oxygenation.

This thesis, consisting of papers I-III and a summary, presents the results of three-dimensional radiobiological modelling of the response of tumours with heterogeneous oxygenation to various radiation qualities, fractionation schemes, oxygenation levels and dynamics using different survival models. The results of this work indicate that hypoxia and its dynamics play a major role in the outcome of both photon and carbon ion radiotherapy, and that neglecting the oxygenation status of tumours treated with SBRT may compromise the treatment outcome substantially. Continued to include clinical studies on the impact of hypoxia on the treatment outcome in lung cancer patients treated with SBRT, this project will hopefully advance the evolution towards routinely incorporating functional imaging of hypoxia into treatment planning. This is ultimately expected to result in increased levels of local control with more patients being cured from their cancer.

Place, publisher, year, edition, pages
Stockholm University, 2014
Hypoxia, Reoxygenation, SBRT, Fractionation
National Category
Other Physics Topics
Research subject
Medical Radiation Physics
urn:nbn:se:su:diva-109348 (URN)
2014-12-10, CCK Lecture Hall, Karolinska Universitetssjukhuset Solna, hus R8, 171 76 Stockholm, 10:00 (English)
Available from: 2014-12-01 Created: 2014-11-18 Last updated: 2014-12-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textOpen Access PDF (3264 kB)Supplemental Material

Search in DiVA

By author/editor
Lindblom, EmelyDasu, AlexandruToma-Dasu, Iuliana
By organisation
Department of Physics
In the same journal
Acta Oncologica
Cancer and Oncology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 66 hits
ReferencesLink to record
Permanent link

Direct link