Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Update to the General Amber Force Field for Small Solutes with an Emphasis on Free Energies of Hydration
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Physical Chemistry.
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Physical Chemistry.
2014 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 118, no 14, 3793-3804 p.Article in journal (Refereed) Published
Abstract [en]

An approach to a straightforward reparametrization of the general AMBER force field (GAFF) for small organic solutes and druglike compounds is presented. The parametrization is based on specific pair interactions between the solvent and the solute, namely, the interactions between the constituting atoms of the solute and the oxygen of water were tuned in order to reproduce experimental hydration free energies for small model compounds. The key of the parametrization was to abandon the Lorentz-Berthelot combination rules for the van der Waals interactions. These parameters were then used for larger solutes in order to validate the newly derived pair interactions. In total close to 600 hydration free energies are computed, ranging from simple alkanes to multifunctional drug compounds, and compared to experimental data. The results show that the proposed parameters work well in describing the interactions between the solute and the solvent and that the agreement in absolute numbers is good. This modified version of GAFF is a good candidate for computing and predicting hydration free energies on a large scale, which has been a long-sought goal of computational chemists and can be used in rational drug design.

Place, publisher, year, edition, pages
2014. Vol. 118, no 14, 3793-3804 p.
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:su:diva-103275DOI: 10.1021/jp4111234ISI: 000334572900004OAI: oai:DiVA.org:su-103275DiVA: diva2:719150
Note

AuthorCount:2;

Available from: 2014-05-23 Created: 2014-05-12 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Jämbeck, Joakim P. M.Lyubartsev, Alexander P.
By organisation
Physical Chemistry
In the same journal
Journal of Physical Chemistry B
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 46 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf