Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Structuring adsorbents and catalysts by processing of porous powders
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Show others and affiliations
2014 (English)In: Journal of the European Ceramic Society, ISSN 0955-2219, E-ISSN 1873-619X, Vol. 34, no 7, 1643-1666 p.Article in journal (Refereed) Published
Abstract [en]

Microporous materials such as zeolites, metal organic frameworks, activated carbons and aluminum phosphates are suitable for catalysis and separation applications. These high surface area materials are invariably produced in particulate forms and need to be transformed into hierarchically porous structures for high performance adsorbents or catalysts. Structuring of porous powders enables an optimized structure with high mass transfer, low pressure drop, good heat management, and high mechanical and chemical stability. The requirements and important properties of hierarchically porous structures are reviewed with a focus on applications in gas separation and catalysis. Versatile powder processing routes to process porous powders into hierarchically porous structures like extrusion, coatings of scaffolds and honeycombs, colloidal processing and direct casting, and sacrificial approaches are presented and discussed. The use and limitations of the use of inorganic binders for increasing the mechanical strength is reviewed, and the most important binder systems, e.g. clays and silica, are described in detail. Recent advances to produce binder-free and complex shaped hierarchically porous monoliths are described and their performance is compared with traditional binder-containing structured adsorbents. Needs related to better thermal management and improved kinetics and volume efficiency are discussed and an outlook on future research is also given.

Place, publisher, year, edition, pages
2014. Vol. 34, no 7, 1643-1666 p.
Keyword [en]
Porous powder, Structuring, Gas separation, Catalysis
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-103257DOI: 10.1016/j.jeurceramsoc.2014.01.008ISI: 000333493200001OAI: oai:DiVA.org:su-103257DiVA: diva2:719375
Note

AuthorCount:5;

Available from: 2014-05-23 Created: 2014-05-12 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Akhtar, FaridHedin, NiklasBergström, Lennart
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Journal of the European Ceramic Society
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 265 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf