CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt176",{id:"formSmash:upper:j_idt176",widgetVar:"widget_formSmash_upper_j_idt176",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt184_j_idt188",{id:"formSmash:upper:j_idt184:j_idt188",widgetVar:"widget_formSmash_upper_j_idt184_j_idt188",target:"formSmash:upper:j_idt184:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

EPIDEMICS ON RANDOM INTERSECTION GRAPHSPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2014 (English)In: The Annals of Applied Probability, ISSN 1050-5164, E-ISSN 2168-8737, Vol. 24, no 3, p. 1081-1128Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2014. Vol. 24, no 3, p. 1081-1128
##### Keywords [en]

Epidemic process, random intersection graphs, multi-type branching processes, coupling
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:su:diva-104381DOI: 10.1214/13-AAP942ISI: 000335616400005OAI: oai:DiVA.org:su-104381DiVA, id: diva2:723612
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt691",{id:"formSmash:j_idt691",widgetVar:"widget_formSmash_j_idt691",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt697",{id:"formSmash:j_idt697",widgetVar:"widget_formSmash_j_idt697",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt703",{id:"formSmash:j_idt703",widgetVar:"widget_formSmash_j_idt703",multiple:true});
##### Note

In this paper we consider a model for the spread of a stochastic SIR (Susceptible -> Infectious -> Recovered) epidemic on a network of individuals described by a random intersection graph. Individuals belong to a random number of cliques, each of random size, and infection can be transmitted between two individuals if and only if there is a clique they both belong to. Both the clique sizes and the number of cliques an individual belongs to follow mixed Poisson distributions. An infinite-type branching process approximation (with type being given by the length of an individual's infectious period) for the early stages of an epidemic is developed and made fully rigorous by proving an associated limit theorem as the population size tends to infinity. This leads to a threshold parameter R-*, so that in a large population an epidemic with few initial infectives can give rise to a large outbreak if and only if R-*>1. A functional equation for the survival probability of the approximating infinite-type branching process is determined; if R-*<= 1, this equation has no nonzero solution, while if R-*>1, it is shown to have precisely one nonzero solution. A law of large numbers for the size of such a large outbreak is proved by exploiting a single-type branching process that approximates the size of the susceptibility set of a typical individual.

AuthorCount:3;

Available from: 2014-06-11 Created: 2014-06-10 Last updated: 2017-12-05Bibliographically approved
doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1996",{id:"formSmash:j_idt1996",widgetVar:"widget_formSmash_j_idt1996",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2050",{id:"formSmash:lower:j_idt2050",widgetVar:"widget_formSmash_lower_j_idt2050",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2051_j_idt2053",{id:"formSmash:lower:j_idt2051:j_idt2053",widgetVar:"widget_formSmash_lower_j_idt2051_j_idt2053",target:"formSmash:lower:j_idt2051:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});