Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Uncovering the Role of Intra- and Intermolecular Motion in Frustrated Lewis Acid/Base Chemistry: Ab Initio Molecular Dynamics Study of CO2 Binding by Phosphorus/Boron Frustrated Lewis Pair [tBu(3)P/B(C6F5)(3)]
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
2014 (English)In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 53, no 9, 4598-4609 p.Article in journal (Refereed) Published
Abstract [en]

The role of the intra- and intermolecular motion, i.e., molecular vibrations and the relative motion of reactants, remains largely unexplored in the frustrated Lewis acid/base chemistry. Here, we address the issue with the ab initio molecular dynamics (AIMD) study of CO2 binding by a Lewis acid (LA) and a Lewis base (LB), i.e., tBu(3)P + CO2 + B(C6F5)(3) -> tBu(3)P-C(O)O-B(C6F5)(3) ([1]). Reasonably large ensemble of AIMD trajectories propagated at 300 K from structures in the saddle region as well as trajectories propagated directly from the reactants region revealed an effect arising from significant recrossing of the saddle area. The effect is that transient complexes composed of weakly interacting reactants nearly cease to progress along the segment of the minimum energy pathway (MEP) at the saddle region for a (subpicosecond) period of time during which the dominant factor is the light-to-heavy type of relative motion of the vibrating reactants, i.e., the bouncing-like movement of CO2 with respect to much heavier phosphine and borane as main contributor to the mode that is perpendicular to the MEP-direction. In terms of how P...C and B...O distances change with time, the roaming-like patterns of typical AIMD trajectories, reactive and nonreactive alike, extend far beyond the saddle region. In addition to the dynamical portrayal of [1], we provide the energy-landscape perspective that takes into account the hierarchy of time scales. The verifiable implication of the effect found here is that the isotopically substituted (heavier) LB/LA pair should be less reactive that the normal and thus lighter counterpart.

Place, publisher, year, edition, pages
2014. Vol. 53, no 9, 4598-4609 p.
National Category
Organic Chemistry
Research subject
Organic Chemistry
Identifiers
URN: urn:nbn:se:su:diva-104394DOI: 10.1021/ic500284qISI: 000335547400040OAI: oai:DiVA.org:su-104394DiVA: diva2:724319
Funder
Berzelii Centre EXSELENTKnut and Alice Wallenberg Foundation
Note

AuthorCount:2;

Available from: 2014-06-12 Created: 2014-06-10 Last updated: 2017-12-05Bibliographically approved
In thesis
1. Molecular Motion in Frustrated Lewis Pair Chemistry: insights from modelling
Open this publication in new window or tab >>Molecular Motion in Frustrated Lewis Pair Chemistry: insights from modelling
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Mechanisms of reactions of the frustrated Lewis pairs (FLPs) with carbon dioxide (CO2) and hydrogen (H2) are studied by using quantum chemical modelling. FLPs are relatively novel chemical systems in which steric effects prevent a Lewis base (LB) from donating its electron pair to a Lewis acid (LA). From the main group of the periodic table, a variety of the electron pair donors and acceptors can create an FLP and the scope of the FLP chemistry is rapidly expanding at present. Representative intermolecular FLPs are phosphines and boranes with bulky electron-donating groups on phosphorus and bulky electron-withdrawing groups on boron – e.g., the tBu3P/B(C6F5)3 pair. The intramolecular FLPs feature linked LB and LA centers in one molecule.

Investigations of the FLP reaction mechanisms were carried out using the transition state (TS) and the potential energy surface (PES) calculations plus the Born-Oppenheimer molecular dynamics (BOMD) as an efficient and robust implementation of general ab initio molecular dynamics scheme. In BOMD simulations, quantum and classical mechanics are combined. The electronic structure calculations are fully quantum via the density functional theory (DFT). Molecular motion at finite (non-zero) temperature is explicitly accounted for at non-quantized level via Newton’s equations. Due to recent advancements of computers and algorithms, one can treat fairly large macromolecular systems with BOMD and even include significant portion of the first solvation shell surrounding a large reacting complex in the molecular model.

Main results are as follows. It is shown that dynamics is significant for understanding of FLP chemistry. The multiscale nature of motion – i.e., light molecules such as CO2 or H2 versus a pair of heavy LB and LA molecules – affects the evolution of interactions in the reacting complex. Motion which is perpendicular to the reaction coordinate was found to play a role in the transit of the activated complex through the TS-region. Regarding the heterolytic cleavage of H2 by tBu3P/B(C6F5)3 FLP simulated in gas phase and with explicit solvent, it was found that (i) the reaction path includes shallow quasi-minima “imbedded” in the TS-region, and (ii) tBu3P/B(C6F5)3 are almost stationary while proton- and hydride-like fragments of H2 move toward phosphorous and boron respectively. For binding of CO2 by tBu3P/B(C6F5)3 FLP, it was found that (i) the reacting complex can “wander” along the “potential energy wall” that temporarily blocks the path to the product, and (ii) the mechanism can combine the concerted and two-step reaction paths in solution. The discovered two-step binding of CO2 by tBu3P/B(C6F5)3 FLP involves solvent-stabilized phosphorus-carbon interactions (dative bonding). These and other presented results are corroborated and explained using TS and PES calculations. With computations of observable characteristics of reactions, it is pointed out how it could be possible to attain experimental proof of the results.

Place, publisher, year, edition, pages
Stockholm: Department of Organic Chemistry, Stockholm University, 2015. 45 p.
Keyword
CO2 capture, hydrogen activation, molecular motion, ab initio molecular dynamics, frustrated Lewis pair, quantum chemical modelling, reaction mechanism
National Category
Organic Chemistry
Research subject
Organic Chemistry
Identifiers
urn:nbn:se:su:diva-122348 (URN)978-91-7649-298-7 (ISBN)
Public defence
2016-01-26, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 6: Accepted.

 

Available from: 2015-12-29 Created: 2015-10-29 Last updated: 2015-12-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Pu, MaopingPrivalov, Timofei
By organisation
Department of Organic Chemistry
In the same journal
Inorganic Chemistry
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 40 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf