Change search
ReferencesLink to record
Permanent link

Direct link
A theoretical analysis of microbial eco-physiological and diffusion limitations to carbon cycling in drying soils
Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology. Swedish University of Agricultural Sciences.
Show others and affiliations
Number of Authors: 5
2014 (English)In: Soil Biology and Biochemistry, ISSN 0038-0717, E-ISSN 1879-3428, Vol. 73, 69-83 p.Article in journal (Refereed) Published
Abstract [en]

Soil microbes face highly variable moisture conditions that force them to develop adaptations to tolerate or avoid drought. Drought conditions also limit the supply of vital substrates by inhibiting diffusion in dry conditions. How these biological and physical factors affect carbon (C) cycling in soils is addressed here by means of a novel process-based model. The model accounts for different microbial response strategies, including different modes of osmoregulation, drought avoidance through dormancy, and extra-cellular enzyme production. Diffusion limitations induced by low moisture levels for both extracellular enzymes and solutes are also described and coupled to the biological responses. Alternative microbial life-history strategies, each encoded in a set of model parameters, are considered and their effects on C cycling assessed both in the long term (steady state ahalysis) and in the short term (transient analysis during soil drying and rewetting). Drought resistance achieved by active osmoregulation requiring large C investment is not useful in soils where growth in dry conditions is limited by C supply. In contrast, dormancy followed by rapid reactivation upon rewetting seems to be a better strategy in such conditions. Synthesizing more enzymes may also be advantageous because it causes larger accumulation of depolymerized products during dry periods that can be used upon rewetting. Based on key model parameters, a spectrum of life-history strategies thus emerges, providing a possible classification of microbial responses to drought.

Place, publisher, year, edition, pages
2014. Vol. 73, 69-83 p.
Keyword [en]
Soil moisture, Heterotrophic respiration, Decomposition, Microbial biomass, Dormancy, Osmoregulation, Water stress
National Category
Agricultural Science
URN: urn:nbn:se:su:diva-105188DOI: 10.1016/j.soilbio.2014.02.008ISI: 000336012100008OAI: diva2:732543


Available from: 2014-07-04 Created: 2014-06-24 Last updated: 2014-07-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Manzoni, Stefano
By organisation
Department of Physical Geography and Quaternary Geology
In the same journal
Soil Biology and Biochemistry
Agricultural Science

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 35 hits
ReferencesLink to record
Permanent link

Direct link