Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hexamethylcyclopentadiene: time-resolved photoelectron spectroscopy and ab initio multiple spawning simulations
Stockholm University, Faculty of Science, Department of Physics.
Show others and affiliations
2014 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 16, no 23, 11770-11779 p.Article in journal (Refereed) Published
Abstract [en]

Progress in our understanding of ultrafast light-induced processes in molecules is best achieved through a close combination of experimental and theoretical approaches. Direct comparison is obtained if theory is able to directly reproduce experimental observables. Here, we present a joint approach comparing time-resolved photoelectron spectroscopy (TRPES) with ab initio multiple spawning (AIMS) simulations on the MS-MR-CASPT2 level of theory. We disentangle the relationship between two phenomena that dominate the immediate molecular response upon light absorption: a spectrally dependent delay of the photoelectron signal and an induction time prior to excited state depopulation in dynamics simulations. As a benchmark molecule, we have chosen hexamethylcyclopentadiene, which shows an unprecedentedly large spectral delay of (310 +/- 20) fs in TRPES experiments. For the dynamics simulations, methyl groups were replaced by hydrogen atoms having mass 15 and TRPES spectra were calculated. These showed an induction time of (108 +/- 10) fs which could directly be assigned to progress along a torsional mode leading to the intersection seam with the molecular ground state. In a stepladder-type approach, the close connection between the two phenomena could be elucidated, allowing for a comparison with other polyenes and supporting the general validity of this finding for their excited state dynamics. Thus, the combination of TRPES and AIMS proves to be a powerful tool for a thorough understanding of ultrafast excited state dynamics in polyenes.

Place, publisher, year, edition, pages
2014. Vol. 16, no 23, 11770-11779 p.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-105947DOI: 10.1039/c4cp00977kISI: 000336796800080OAI: oai:DiVA.org:su-105947DiVA: diva2:733154
Note

AuthorCount:7;

Available from: 2014-07-08 Created: 2014-07-08 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Schalk, Oliver
By organisation
Department of Physics
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 32 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf