Change search
ReferencesLink to record
Permanent link

Direct link
Hexamethylcyclopentadiene: time-resolved photoelectron spectroscopy and ab initio multiple spawning simulations
Stockholm University, Faculty of Science, Department of Physics.
Show others and affiliations
2014 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 16, no 23, 11770-11779 p.Article in journal (Refereed) Published
Abstract [en]

Progress in our understanding of ultrafast light-induced processes in molecules is best achieved through a close combination of experimental and theoretical approaches. Direct comparison is obtained if theory is able to directly reproduce experimental observables. Here, we present a joint approach comparing time-resolved photoelectron spectroscopy (TRPES) with ab initio multiple spawning (AIMS) simulations on the MS-MR-CASPT2 level of theory. We disentangle the relationship between two phenomena that dominate the immediate molecular response upon light absorption: a spectrally dependent delay of the photoelectron signal and an induction time prior to excited state depopulation in dynamics simulations. As a benchmark molecule, we have chosen hexamethylcyclopentadiene, which shows an unprecedentedly large spectral delay of (310 +/- 20) fs in TRPES experiments. For the dynamics simulations, methyl groups were replaced by hydrogen atoms having mass 15 and TRPES spectra were calculated. These showed an induction time of (108 +/- 10) fs which could directly be assigned to progress along a torsional mode leading to the intersection seam with the molecular ground state. In a stepladder-type approach, the close connection between the two phenomena could be elucidated, allowing for a comparison with other polyenes and supporting the general validity of this finding for their excited state dynamics. Thus, the combination of TRPES and AIMS proves to be a powerful tool for a thorough understanding of ultrafast excited state dynamics in polyenes.

Place, publisher, year, edition, pages
2014. Vol. 16, no 23, 11770-11779 p.
National Category
Physical Sciences
URN: urn:nbn:se:su:diva-105947DOI: 10.1039/c4cp00977kISI: 000336796800080OAI: diva2:733154


Available from: 2014-07-08 Created: 2014-07-08 Last updated: 2014-07-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Schalk, Oliver
By organisation
Department of Physics
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 12 hits
ReferencesLink to record
Permanent link

Direct link