Change search
ReferencesLink to record
Permanent link

Direct link
Show others and affiliations
2014 (English)In: Health Physics, ISSN 0017-9078, Vol. 106, no 6, 764-771 p.Article in journal (Refereed) Published
Abstract [en]

Large scale radiological emergencies require high throughput techniques of biological dosimetry for population triage in order to identify individuals indicated for medical treatment. The dicentric assay is the gold standard technique for the performance of biological dosimetry, but it is very time consuming and needs well trained scorers. To increase the throughput of blood samples, semi-automation of dicentric scoring was investigated in the framework of the MULTIBIODOSE EU FP7 project, and dose effect curves were established in six biodosimetry laboratories. To validate these dose effect curves, blood samples from 33 healthy donors (>10 donors/scenario) were irradiated in vitro with Co-60 gamma rays simulating three different exposure scenarios: acute whole body, partial body, and protracted exposure, with three different doses for each scenario. All the blood samples were irradiated at Ghent University, Belgium, and then shipped blind coded to the participating laboratories. The blood samples were set up by each lab using their own standard protocols, and metaphase slides were prepared to validate the calibration curves established by semi-automatic dicentric scoring. In order to achieve this, 300 metaphases per sample were captured, and the doses were estimated using the newly formed dose effect curves. After acute uniform exposure, all laboratories were able to distinguish between 0 Gy, 0.5 Gy, 2.0, and 4.0 Gy (p < 0.001), and, in most cases, the dose estimates were within a range of +/- 0.5 Gy of the given dose. After protracted exposure, all laboratories were able to distinguish between 1.0 Gy, 2.0 Gy, and 4.0 Gy (p < 0.001), and here also a large number of the dose estimates were within +/- 0.5 Gy of the irradiation dose. After simulated partial body exposure, all laboratories were able to distinguish between 2.0 Gy, 4.0 Gy, and 6.0 Gy (p < 0.001). Overdispersion of the dicentric distribution enabled the detection of the partial body samples; however, this result was clearly dose-dependent. For partial body exposures, only a few dose estimates were in the range of +/- 0.5 Gy of the given dose, but an improvement could be achieved with higher cell numbers. The new method of semi-automation of the dicentric assay was introduced successfully in a network of six laboratories. It is therefore concluded that this method can be used as a high-throughput screening tool in a large-scale radiation accident.

Place, publisher, year, edition, pages
2014. Vol. 106, no 6, 764-771 p.
Keyword [en]
accidents, handling, dose assessment, dosimetry, emergencies, radiological
National Category
Other Natural Sciences
URN: urn:nbn:se:su:diva-105904DOI: 10.1097/HP.0000000000000077ISI: 000336501300020OAI: diva2:733366
EU, FP7, Seventh Framework Programme, 241536


Available from: 2014-07-09 Created: 2014-07-08 Last updated: 2014-07-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Wojcik, Andrzej
By organisation
Department of Molecular Biosciences, The Wenner-Gren Institute
In the same journal
Health Physics
Other Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 85 hits
ReferencesLink to record
Permanent link

Direct link