Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Patterns of landscape evolution on the central and northern Tibetan Plateau investigated using in-situ produced Be-10 concentrations from river Sediments
Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology. Purdue University, USA.
Show others and affiliations
2014 (English)In: Earth and Planetary Science Letters, ISSN 0012-821X, E-ISSN 1385-013X, Vol. 398, 77-89 p.Article in journal (Refereed) Published
Abstract [en]

Quantifying long-term erosion rates across the Tibetan Plateau and its bordering mountains is of critical importance to an understanding of the interaction between climate, tectonic movement, and landscape evolution. We present a new dataset of basin-wide erosion rates from the central and northern Tibetan Plateau derived using in-situ produced Be-10 concentrations of river sediments. Basin-wide erosion rates from the central plateau range from 10.1 +/- 0.9 to 36.8 +/- 3.2 mm/kyr, slightly higher than published local erosion rates measured from bedrock surfaces. These values indicate that long-term downwearing of plateau surfaces proceeds at low rates and that the landscape is demonstrably stable in the central plateau. In contrast, basin-wide erosion rates from the Kunlun Shan on the northern Tibetan Plateau range from 19.9 +/- 1.7 to 163.2 +/- 15.9 mm/kyr. Although the erosion rates of many of these basins are much higher than the rates from the central plateau, they are lower than published basin-wide erosion rates from other mountains fringing the Tibetan Plateau, probably because the basins in the Kunlun Shan include both areas of low-relief plateau surface and high-relief mountain catchments and may also result from retarded fluvial sediment transport in an arid climate. Significantly higher basin-wide erosion rates derived from the Tibetan Plateau margin, compared to the central plateau, reflect a relatively stable plateau surface that is being dissected at its margins by active fluvial erosion.

Place, publisher, year, edition, pages
2014. Vol. 398, 77-89 p.
Keyword [en]
cosmogenic nuclides, basin-wide erosion rates, Tibetan Plateau, Kunlun Shan, landscape evolution
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-106315DOI: 10.1016/j.epsl.2014.04.045ISI: 000337870400008OAI: oai:DiVA.org:su-106315DiVA: diva2:736193
Note

AuthorCount:6;

Available from: 2014-08-05 Created: 2014-08-04 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Harbor, JonStroeven, Arjen P.
By organisation
Department of Physical Geography and Quaternary Geology
In the same journal
Earth and Planetary Science Letters
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 37 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf