Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Study of attosecond delays using perturbation diagrams and exterior complex scaling
Stockholm University, Faculty of Science, Department of Physics. Max Planck Society, Germany; Centre for Free Electron Laser Science, Germany.
Stockholm University, Faculty of Science, Department of Physics.
2014 (English)In: Journal of Physics B: Atomic, Molecular and Optical Physics, ISSN 0953-4075, E-ISSN 1361-6455, Vol. 47, no 12, 124012- p.Article in journal (Refereed) Published
Abstract [en]

We describe in detail how attosecond delays in laser-assisted photoionization can be computed using perturbation theory based on two-photon matrix elements. Special emphasis is laid on above-threshold ionization, where the electron interacts with an infrared field after photoionization by an extreme ultraviolet field. Correlation effects are introduced using diagrammatic many-body theory to the level of the random-phase approximation with exchange. Our aim is to provide an ab initio route to correlated multi-photon processes that are required for an accurate description of experiments on the attosecond time scale. Here, our results are focused on photoionization of the M-shell of argon atoms, where experiments have been carried out using the so-called reconstruction of attosecond beating by the two-photon interference transitions technique. An influence of autoionizing resonances in attosecond delay measurements is observed. Further, it is shown that the delay depends on both detection angle of the photoelectron and energy of the probe photon.

Place, publisher, year, edition, pages
2014. Vol. 47, no 12, 124012- p.
Keyword [en]
attosecond delay, RABITT, random-phase approximation, RPAE, complex scaling, delay in ionization, many-body perturbation theory
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-106331DOI: 10.1088/0953-4075/47/12/124012ISI: 000337721200013OAI: oai:DiVA.org:su-106331DiVA: diva2:736581
Note

AuthorCount:2;

Available from: 2014-08-07 Created: 2014-08-04 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Dahlström, J. MarcusLindroth, Eva
By organisation
Department of Physics
In the same journal
Journal of Physics B: Atomic, Molecular and Optical Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 53 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf