Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
Show others and affiliations
2014 (English)In: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 119, no 11, 6867-6885 p.Article in journal (Refereed) Published
Abstract [en]

We investigated the millennial variability (1000 A.D.-2000 A.D.) of global biogenic volatile organic compound (BVOC) emissions by using two independent numerical models: The Model of Emissions of Gases and Aerosols from Nature (MEGAN), for isoprene, monoterpene, and sesquiterpene, and Lund-Potsdam-Jena-General Ecosystem Simulator (LPJ-GUESS), for isoprene and monoterpenes. We found the millennial trends of global isoprene emissions to be mostly affected by land cover and atmospheric carbon dioxide changes, whereas monoterpene and sesquiterpene emission trends were dominated by temperature change. Isoprene emissions declined substantially in regions with large and rapid land cover change. In addition, isoprene emission sensitivity to drought proved to have significant short-term global effects. By the end of the past millennium MEGAN isoprene emissions were 634 TgC yr-1 (13% and 19% less than during 1750-1850 and 1000-1200, respectively), and LPJ-GUESS emissions were 323 TgC yr-1(15% and 20% less than during 1750-1850 and 1000-1200, respectively). Monoterpene emissions were 89 TgC yr-1(10% and 6% higher than during 1750-1850 and 1000-1200, respectively) in MEGAN, and 24 TgC yr-1 (2% higher and 5% less than during 1750-1850 and 1000-1200, respectively) in LPJ-GUESS. MEGAN sesquiterpene emissions were 36 TgC yr-1(10% and 4% higher than during 1750-1850 and 1000-1200, respectively). Although both models capture similar emission trends, the magnitude of the emissions are different. This highlights the importance of building better constraints on VOC emissions from terrestrial vegetation.

Place, publisher, year, edition, pages
2014. Vol. 119, no 11, 6867-6885 p.
Keyword [en]
VOC emissions, land cover, isoprene, monoterpene, sesquiterpene
National Category
Earth and Related Environmental Sciences
Research subject
Applied Environmental Science
Identifiers
URN: urn:nbn:se:su:diva-106340DOI: 10.1002/2013JD021238ISI: 000337974500038OAI: oai:DiVA.org:su-106340DiVA: diva2:736695
Note

AuthorCount:9;

Available from: 2014-08-08 Created: 2014-08-04 Last updated: 2017-12-05Bibliographically approved
In thesis
1. Anthropogenic influence on climate through changes in aerosol emissions from air pollution and land use change
Open this publication in new window or tab >>Anthropogenic influence on climate through changes in aerosol emissions from air pollution and land use change
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Particulate matter suspended in air (i.e. aerosol particles) exerts a substantial influence on the climate of our planet and is responsible for causing severe public health problems in many regions across the globe. Human activities have altered the natural and anthropogenic emissions of aerosol particles through direct emissions or indirectly by modifying natural sources. The climate effects of the latter have been largely overlooked. Humans have dramatically altered the land surface of the planet causing changes in natural aerosol emissions from vegetated areas. Regulation on anthropogenic and natural aerosol emissions have the potential to affect the climate on regional to global scales. Furthermore, the regional climate effects of aerosol particles could potentially be very different than the ones caused by other climate forcers (e.g. well mixed greenhouse gases). The main objective of this work was to investigate the climatic effects of land use and air pollution via aerosol changes.

Using numerical model simulations it was found that land use changes in the past millennium have likely caused a positive radiative forcing via aerosol climate interactions. The forcing is an order of magnitude smaller and has an opposite sign than the radiative forcing caused by direct aerosol emissions changes from other human activities. The results also indicate that future reductions of fossil fuel aerosols via air quality regulations may lead to an additional warming of the planet by mid-21st century and could also cause an important Arctic amplification of the warming. In addition, the mean position of the intertropical convergence zone and the Asian monsoon appear to be sensitive to aerosol emission reductions from air quality regulations. For these reasons, climate mitigation policies should take into consideration aerosol air pollution, which has not received sufficient attention in the past.

Place, publisher, year, edition, pages
Stockholm: Department of Environmental Science and Analytical Chemistry, Stockholm University, 2017
Keyword
Climate change, Air quality, Land use, General circulation, Atmosphere-Ocean interactions, Aerosol climate effects, Earth system modelling
National Category
Climate Research Meteorology and Atmospheric Sciences Environmental Sciences Oceanography, Hydrology, Water Resources
Research subject
Applied Environmental Science
Identifiers
urn:nbn:se:su:diva-137077 (URN)978-91-7649-650-3 (ISBN)978-91-7649-651-0 (ISBN)
Public defence
2017-02-17, Nordenskiöldsalen, Geovetenskapens hus, Svante Arrhenius väg 12, Stockholm, 13:00 (English)
Opponent
Supervisors
Available from: 2017-01-25 Created: 2016-12-22 Last updated: 2017-01-24Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Acosta Navarro, Juan CamiloEkman, Annica M. L.Riipinen, Ilona
By organisation
Department of Applied Environmental Science (ITM)Department of Meteorology
In the same journal
Journal of Geophysical Research - Atmospheres
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 127 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf