References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt147",{id:"formSmash:upper:j_idt147",widgetVar:"widget_formSmash_upper_j_idt147",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt148_j_idt150",{id:"formSmash:upper:j_idt148:j_idt150",widgetVar:"widget_formSmash_upper_j_idt148_j_idt150",target:"formSmash:upper:j_idt148:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Extended Gauss-Bonnet gravities in Weyl geometryPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2014 (English)In: Classical and quantum gravity, ISSN 0264-9381, E-ISSN 1361-6382, Vol. 31, no 13, 135002- p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2014. Vol. 31, no 13, 135002- p.
##### Keyword [en]

modified gravity, Weyl geometry, vector field theories, Horndeski Lagrangians, scale invariance
##### National Category

Astronomy, Astrophysics and Cosmology
##### Identifiers

URN: urn:nbn:se:su:diva-106572DOI: 10.1088/0264-9381/31/13/135002ISI: 000338698500002OAI: oai:DiVA.org:su-106572DiVA: diva2:738085
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt388",{id:"formSmash:j_idt388",widgetVar:"widget_formSmash_j_idt388",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt394",{id:"formSmash:j_idt394",widgetVar:"widget_formSmash_j_idt394",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt400",{id:"formSmash:j_idt400",widgetVar:"widget_formSmash_j_idt400",multiple:true});
##### Note

In this paper we consider an extended Gauss-Bonnet gravity theory in arbitrary dimensions and in a space provided with a Weyl connection, which is torsion-free but non-metric-compatible, the non-metricity tensor being determined by a vector field. The action considered consists of the usual Einstein-Hilbert action plus all the terms quadratic in the curvature that reduce to the usual Gauss-Bonnet term for vanishing Weyl connection, i.e., when only the Levi-Civita part of the connection is present. We expand the action in terms of Riemannian quantities and obtain vector-tensor theories. We find that all the free parameters only appear in the kinetic term of the vector field, so two branches are possible: one with a propagating vector field and another one where the vector field does not propagate. We focus on the propagating case. We find that in four dimensions, the theory is equivalent to Einstein's gravity plus a Proca field. This field is naturally decoupled from matter, so it represents a natural dark matter candidate. Also for d = 4, we discuss a non-trivial cubic term in the curvature that can be constructed without spoiling the second-order nature of the field equations, because it leads to the vector-tensor Horndeski interaction. In arbitrary dimensions, the theory becomes more involved. We show that, even though the vector field presents kinetic interactions which do not have U(1) symmetry, there are no additional propagating degrees of freedom with respect to the usual massive case. We show that, interestingly, this relies on the fact that the corresponding Stuckelberg field belongs to a specific class within the general Horndeski theories. Finally, since Weyl geometries provide the natural ground on which to build scale invariant theories, we apply the usual Weyl gauging in order to make the Horndeski action locally scale invariant, and discuss new terms that can be added.

AuthorCount:2;

Available from: 2014-08-15 Created: 2014-08-12 Last updated: 2014-08-15Bibliographically approvedReferences$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1106",{id:"formSmash:lower:j_idt1106",widgetVar:"widget_formSmash_lower_j_idt1106",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1107_j_idt1109",{id:"formSmash:lower:j_idt1107:j_idt1109",widgetVar:"widget_formSmash_lower_j_idt1107_j_idt1109",target:"formSmash:lower:j_idt1107:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});