Change search
ReferencesLink to record
Permanent link

Direct link
Atomistic Insight into Orthoborate-Based Ionic Liquids: Force Field Development and Evaluation
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Show others and affiliations
2014 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 118, no 29, 8711-8723 p.Article in journal (Refereed) Published
Abstract [en]

We have developed an all-atomistic force field for a new class of halogen-free chelated orthoborate-phosphonium ionic liquids. The force field is based on an AMBER framework with determination of force field parameters for phosphorus and boron atoms, as well as refinement of several available parameters. The bond and angle force constants were adjusted to fit vibration frequency data derived from both experimental measurements and ab initio calculations. The force field parameters for several dihedral angles were obtained by fitting torsion energy profiles deduced from ab initio calculations. To validate the proposed force field parameters, atomistic simulations were performed for 12 ionic liquids consisting of tetraalkylphosphonium cations and chelated orthoborate anions. The predicted densities for neat ionic liquids and the [P-6,P-6,P-6,P-14][BOB] sample, with a water content of approximately 2.3-2.5 wt %, are in excellent agreement with available experimental data. The potential energy components of 12 ionic liquids were discussed in detail. The radial distribution functions and spatial distribution functions were analyzed and visualized to probe the microscopic ionic structures of these ionic liquids. There are mainly four high-probability regions of chelated orthoborate anions distributed around tetraalkylphosphonium cations in the first solvation shell, and such probability distribution functions are strongly influenced by the size of anions.

Place, publisher, year, edition, pages
2014. Vol. 118, no 29, 8711-8723 p.
National Category
Physical Chemistry
URN: urn:nbn:se:su:diva-106902DOI: 10.1021/jp503029dISI: 000339540600028OAI: diva2:741253


Available from: 2014-08-27 Created: 2014-08-26 Last updated: 2014-08-27Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Wang, Yong-LeiLaaksonen, Aatto
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Journal of Physical Chemistry B
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 15 hits
ReferencesLink to record
Permanent link

Direct link