Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Global emission inventories for C-4-C-14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: production and emissions from quantifiable sources
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
Show others and affiliations
2014 (English)In: Environment International, ISSN 0160-4120, E-ISSN 1873-6750, Vol. 70, 62-75 p.Article, review/survey (Refereed) Published
Abstract [en]

We quantify global emissions of C-4-C-14 perfluoroalkyl carboxylic acid (PFCA) homologues during the life-cycle of products based on perfluorooctanoic acid (PFOA), perfluorononanoic add (PFNA), perfluorooctane sulfonyl fluoride (POSF), and fluorotelomer compounds. We estimate emissions of 2610-21400 tonnes of C-4-C-14 PFCAs in the period from 1951 to 2015, and project 20-6420 tonnes to be emitted from 2016 to 2030. The global annual emissions steadily increased in the period 1951-2002, followed by a decrease and then another increase in the period 2002-2012. Releases from fluoropolymer production contributed most to historical PFCA emissions (e.g. 55-83% in 1951-2002). Since 2002, there has been a geographical shift of industrial sources (particularly fluoropolymer production sites) from North America, Europe and Japan to emerging Asian economies, especially China Sources differ between PFCA homologues, sometimes Considerably, and the relative contributions of each source change over time. For example, whereas 98-100% of historical (1951-2002) PFOA emissions are attributed to direct releases during the life-cycle of products containing PFOA as ingredients or impurities, a much higher historical contribution from PFCA precursor degradation is estimated for some other homologues (e.g. 9-78% for PFDA). We address the uncertainties of the PFCA emissions by defining a lower and a higher emission scenario, which differ by approximately a factor of eight.

Place, publisher, year, edition, pages
2014. Vol. 70, 62-75 p.
Keyword [en]
Perfluoroalkyl carboxylic acids (PFCAs), Global emission inventory, Geographical shift of industrial sources, Per- and polyfluorinated alkyl substances, PFOA
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-107080DOI: 10.1016/j.envint.2014.04.013ISI: 000339693200007OAI: oai:DiVA.org:su-107080DiVA: diva2:743091
Note

AuthorCount:5;

Available from: 2014-09-03 Created: 2014-09-03 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Cousins, Ian T.
By organisation
Department of Applied Environmental Science (ITM)
In the same journal
Environment International
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf