Change search
ReferencesLink to record
Permanent link

Direct link
Rules for priming and inhibition of glycosaminoglycan biosynthesis; probing the beta 4GalT7 active site
Show others and affiliations
2014 (English)In: Chemical Science, ISSN 2041-6520, Vol. 5, no 9, 3501-3508 p.Article in journal (Refereed) Published
Abstract [en]

beta-1,4-Gatactosyltransferase 7 (beta 4GalT7) is an essential enzyme in the biosynthesis of glycosaminoglycan (GAG) chains of proteoglycans (PGs). Mammalian cells produce PGs, which are involved in biological processes such as cell growth and differentiation. The PGs consist of a core protein, with one or several GAG chains attached. Both the structure of the PGs and the GAG chains, and the expression of the enzymes involved in their biosynthesis and degradation, vary between normal cells and tumor cells. The biosynthesis of GAG chains is initiated by xylosylation of a serine residue of the core protein, followed by galactosylation by beta 4GalT7. The biosynthesis can also be initiated by exogenously added beta-D-xylopyranosides with hydrophobic aglycons, which thus can act as acceptor substrates for beta 4GalT7. To determine the structural requirements for beta 4GalT7 activity, we have cloned and expressed the enzyme and designed a focused library of 2-naphthyl beta-D-xylopyranosides with modifications of the xylose moiety. Based on enzymatic studies, that is galactosylation and its inhibition, conformational analysis and molecular modeling using the crystal structure, we propose that the binding pocket of beta 4GalT7 is very narrow, with a precise set of important hydrogen bonds. Xylose appears to be the optimal acceptor substrate for galactosylation by beta 4GalT7. However, we show that modifications of the xylose moiety of the beta-D-xylopyranosides can render inhibitors of galactosylation. Such compounds will be valuable tools for the exploration of GAG and PG biosynthesis and a starting point for development of anti-tumor agents.

Place, publisher, year, edition, pages
2014. Vol. 5, no 9, 3501-3508 p.
National Category
Organic Chemistry
URN: urn:nbn:se:su:diva-107608DOI: 10.1039/c4sc01244eISI: 000340695800020OAI: diva2:750199
The Crafoord FoundationGunnar Nilsson Cancer FoundationKnut and Alice Wallenberg FoundationLars Hierta Memorial FoundationMagnus Bergvall FoundationSwedish Cancer SocietySwedish Research Council


Available from: 2014-09-26 Created: 2014-09-22 Last updated: 2015-09-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Widmalm, Göran
By organisation
Department of Organic Chemistry
In the same journal
Chemical Science
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 36 hits
ReferencesLink to record
Permanent link

Direct link