Change search
ReferencesLink to record
Permanent link

Direct link
Microdosimetry of proton and carbon ions
Stockholm University, Faculty of Science, Department of Physics.
Show others and affiliations
2014 (English)In: Medical physics (Lancaster), ISSN 0094-2405, Vol. 41, no 8, 239-250 p.Article in journal (Refereed) Published
Abstract [en]

Purpose: To investigate microdosimetry properties of 160 MeV/u protons and 290 MeV/u C-12 ion beams in small volumes of diameters 10-100 nm. Methods: Energy distributions of primary particles and nuclear fragments in the beams were calculated from simulations with the general purpose code SHIELD-HIT, while energy depositions by monoenergetic ions in nanometer volumes were obtained from the event-by-event Monte Carlo track structure ion code PITS99 coupled with the electron track structure code KURBUC. Results: The results are presented for frequencies of energy depositions in cylindrical targets of diameters 10-100 nm, dose distributions (y) over bar (D) in lineal energy y, and dose-mean lineal energies YD For monoenergetic ions, the hp was found to increase with an increasing target size for high-linear energy transfer (LET) ions, but decrease with an increasing target size for low-LET ions. Compared to the depth dose profile of the ion beams, the maximum of the hp depth profile for the 160 MeV proton beam was located at similar to 0.5 cm behind the Bragg peak maximum, while the PD peak of the 290 MeV/u C-12 beam coincided well with the peak of the absorbed dose profile. Differences between the (y) over bar (D) and dose-averaged linear energy transfer (LETD) were large in the proton beam for both target volumes studied, and in the C-12 beam for the 10 nm diameter cylindrical volumes. The (y) over bar (D) determined for 100 run diameter cylindrical volumes in the C-12 beam was approximately equal to the LETD. The contributions from secondary particles to the (y) over bar (D) of the beams are presented, including the contributions from secondary protons in the proton beam and from fragments with atomic number Z = 1-6 in the C-12 beam. Conclusions: The present investigation provides an insight into differences in energy depositions in subcellular-size volumes when irradiated by proton and carbon ion beams. The results are useful for characterizing ion beams of practical importance for biophysical modeling of radiation-induced DNA damage response and repair in the depth profiles of protons and carbon ions used in radiotherapy.

Place, publisher, year, edition, pages
2014. Vol. 41, no 8, 239-250 p.
Keyword [en]
microdosimetry, lineal energy, ion beams, track structure, nuclear fragments
National Category
Radiology, Nuclear Medicine and Medical Imaging Physical Sciences
URN: urn:nbn:se:su:diva-107810DOI: 10.1118/1.4888338ISI: 000341068100023OAI: diva2:752590


Available from: 2014-10-05 Created: 2014-09-29 Last updated: 2014-10-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Department of Physics
In the same journal
Medical physics (Lancaster)
Radiology, Nuclear Medicine and Medical ImagingPhysical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 41 hits
ReferencesLink to record
Permanent link

Direct link