Change search
ReferencesLink to record
Permanent link

Direct link
Enhanced conductivity of SDC based nanocomposite electrolyte by spark plasma sintering
Show others and affiliations
2014 (English)In: International journal of hydrogen energy, ISSN 0360-3199, Vol. 39, no 26, 14391-14396 p.Article in journal (Refereed) Published
Abstract [en]

Recently, ceria-based nanocomposites have been considered as promising electrolyte candidates for low-temperature solid oxide fuel cells (LTSOFC) due to their dual-ion conduction and excellent performance. However, the densification of these composites remains a great concern since the relative low density of the composite electrolyte is suspected to deteriorate the durability of fuel cell. In the present study, the ionic conductivity of two kinds of SDC-based nanocomposite electrolytes processed by spark plasma sintering (SPS) method was investigated, and compared to that made by conventional cold pressing followed by sintering (normal processing way). The density of solid electrolyte can reach higher than 95% of the theoretical value after SPS processing, while the relative density of the electrolyte pellets by normal processing way can hardly approach 75%. The structure and morphology of the sintered pellets were characterized by XRD and SEM. The ionic conductivity of samples was measured by electrochemical impedance spectroscopy (EIS). The results showed that the ionic conductivity of the two kinds of electrolytes treated with SPS was significantly enhanced, compared with the electrolyte pellets processed through the conventional method. The profile of impedance curve of the electrolytes was altered as well. This study demonstrates that the conductivity of SDC based nanocomposite electrolyte can be further improved by adequate densification process.

Place, publisher, year, edition, pages
2014. Vol. 39, no 26, 14391-14396 p.
Keyword [en]
SDC-carbonate nanocomposite, Spark plasma sintering (SPS), Nanocomposite electrolyte, Solid oxide fuel cells (SOFCs)
National Category
Chemical Sciences
URN: urn:nbn:se:su:diva-107978DOI: 10.1016/j.ijhydene.2014.02.126ISI: 000341465800055OAI: diva2:753881


Available from: 2014-10-09 Created: 2014-10-06 Last updated: 2014-10-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Johnsson, Mats
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
International journal of hydrogen energy
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 20 hits
ReferencesLink to record
Permanent link

Direct link