Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the origin of the capacity fading for aluminium negative electrodes in Li-ion batteries
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).ORCID iD: 0000-0001-7286-1211
2014 (English)In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 269, 266-273 p.Article in journal (Refereed) Published
Abstract [en]

The origin of the capacity loss for aluminium negative electrodes in Li-ion batteries has been studied for electrodeposited aluminium nanorod electrodes coated with Al2O3 layers of different thicknesses (i.e. a native oxide layer, 30 and 60 nm) mainly employing pouch cell voltammetric cycling versus metallic lithium. Whereas the capacity decreased continuously during cycling between 0.1 and 3 V vs. Li+/Li, good cycling stability was obtained when the cycling was carried out between 0.1 and 1 V vs. Li+/Li. Since no significant dependence of the cycling stability on the thickness of the alumina layer was found in any of the experiments, the observed loss of capacity is unlikely to have been caused by volume expansion effects. The latter is further supported by the finding that the capacity (obtained when cycling between 0.1 and 3 V vs. Li+/Li) decreased linearly with the inverse of the square root of the cycling time, indicating that the capacity loss was due to the loss of lithium as a result of lithium diffusion into the bulk of the aluminium electrodes. The latter is explained based on a lithium-aluminium alloying and dealloying model which complements previously published models.

Place, publisher, year, edition, pages
2014. Vol. 269, 266-273 p.
Keyword [en]
Aluminium, Nanorods, Li-ion battery anode, Capacity loss, Diffusion, Volume expansion
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-107782DOI: 10.1016/j.jpowsour.2014.06.118ISI: 000340975200036OAI: oai:DiVA.org:su-107782DiVA: diva2:754251
Note

AuthorCount:4;

Available from: 2014-10-09 Created: 2014-09-29 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Tai, Cheuk-Wai
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Journal of Power Sources
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 34 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf