Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Synthetic Route toward Layered Materials: Introducing Stereochemically Active Lone-Pairs into Transition Metal Oxohalides
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
2014 (English)In: Crystal Growth & Design, ISSN 1528-7483, E-ISSN 1528-7505, Vol. 14, no 10, 5252-5259 p.Article in journal (Refereed) Published
Abstract [en]

The synthesis and crystal structure of eight new layered compounds in the (Mn2+, Fe2+)-(Sb3+, Te4+)-O-(Cl, Br) system are presented. Mn5Te4O12Cl2 (1), MnSb4O6Cl2 (2), Mn2Sb3O6Cl (3), Mn9Sb8O16Cl10 (4), Fe3Sb2O4Br4 (5), Fe7Sb10O18X8 [X = Cl (6), Br (7)], and Mn7Sb10O18Br8 (8). All of the compounds are made up of charge neutral layers held together through van der Waals interactions, except for compound 2, which has positively charged layers with halide ions between them that act as counterions. The transition metal atoms are confined in sheets within the layers and are thus well separated from each other along the stacking direction. The synthesis concept is based on utilizing both halide ions and p-elements having a stereochemically active lone pair that both act to open up crystal structures. This combination has proven to be a successful synthetic approach for finding new layered inorganic materials containing transition metals.

Place, publisher, year, edition, pages
2014. Vol. 14, no 10, 5252-5259 p.
National Category
Inorganic Chemistry
Research subject
Inorganic Chemistry
Identifiers
URN: urn:nbn:se:su:diva-108233DOI: 10.1021/cg5010374ISI: 000342609300050OAI: oai:DiVA.org:su-108233DiVA: diva2:755960
Available from: 2014-10-15 Created: 2014-10-15 Last updated: 2017-12-05Bibliographically approved
In thesis
1. The Role of Tetrahedral Building Blocks in Low-Dimensional Oxohalide Materials
Open this publication in new window or tab >>The Role of Tetrahedral Building Blocks in Low-Dimensional Oxohalide Materials
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The structural architecture found in low-dimensional materials can lead to a number of interesting physical properties including anisotropic conductivity, magnetic frustration and non-linear optical properties. There is no standard synthesis concept described thus far to apply when searching for new low-dimensional compounds, and therefore control on the design of the new materials is of great importance.This thesis describes the synthesis, crystal structure and characterization of some new transition metal oxohalide compounds containing p-elements having a stereochemically active lone-pair. First row transition metal cations have been used in combination with SeIV, SbIII and TeIV ions as lone-pair elements and Cl- and Br- as halide ions. The lone-pairs do not participate in covalent bonding and are responsible for an asymmetric one-sided coordination. Lone-pair elements in combination with halide ions have shown to be powerful structural spacers that can confine transition metal building blocks into low-dimensional arrangements. The halide ions and lone-pairs reside in non-bonded crystal volumes where they interact through weak van der Waals forces. The transition metal atoms are most often arranged to form sheets, chains or small clusters; most commonly layered compounds are formed.To further explore the chemical system and to separate the transition metal entities even more the possibility to include tetrahedral building blocks such as phosphate-, silicate-, sulphate- and vanadate building blocks into this class of compounds has been investigated. Tetrahedral building blocks are well known for their ability of segmenting structural arrangements by corner sharing, which often leads to the formation of open framework structures. The inclusion of tetrahedral building blocks led to the discovery of interesting structural features such as complex hydrogen bonding, formation of unusual solid solutions or faulted stacking of layers.Compounds for which phase pure material could be synthesized have been characterized in terms of their magnetic properties. Most compounds were found to have antiferromagnetic spin interactions and indications of magnetic frustration could be observed in some of them.

Place, publisher, year, edition, pages
Stockholm: Department of Materials and Environmental Chemistry (MMK), Stockholm University, 2014. 60 p.
Keyword
Lone-pair elements, crystal structure, low-dimensional compounds, oxohalides
National Category
Inorganic Chemistry
Research subject
Inorganic Chemistry
Identifiers
urn:nbn:se:su:diva-108160 (URN)978-91-7649-014-3 (ISBN)
Public defence
2014-11-13, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockhom, 13:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 6: Manuscript. Paper 9: Manuscript. Paper 10: Manuscript.

Available from: 2014-10-22 Created: 2014-10-13 Last updated: 2014-11-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Zimmermann, IwanJohnsson, Mats
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Crystal Growth & Design
Inorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 216 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf