Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterisation of Three Regimes of Collapsing Arctic Ice Complex Deposits on the SE Laptev Sea Coast using Biomarkers and Dual Carbon Isotopes
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
Show others and affiliations
2014 (English)In: Permafrost and Periglacial Processes, ISSN 1045-6740, E-ISSN 1099-1530, Vol. 25, no 3, 172-183 p.Article in journal (Refereed) Published
Abstract [en]

Arctic amplification of climate warming is intensifying the thaw and coastal erosion of the widespread and carbon-rich Siberian Ice Complex Deposits (ICD). Despite the potential for altering long-term carbon dynamics in the Arctic, the susceptibility of organic carbon (OC) to degradation as the ICD thaw is poorly characterised. This study identifies signs of OC degradation in three Siberian ICD regimes of coastal erosion through elemental, isotopic and molecular analyses. The degree of erosion appears to determine the extent of degradation. The moisture-limited and beach-protected ICD bluff near Buor-Khaya Cape, characterised by thermokarst mounds (baydzherakhs), represents a dormant regime with limited ongoing degradation. Conversely, the more exposed ICD scarps on eroding riverbanks (Olenek Channel, Lena Delta) and coastal slopes (Muostakh Island) showed more pronounced signs of ongoing OC decay. Different parameters suggest that degradation can partially explain the shift of the OC signature with C-14 age in the thawing ICD. Exposure time, degree of erosion, slope gradient and moisture conditions appear to be key factors determining the degradation propensity of OC in exposed ICD. These field results document the lability of OC in ICD upon thaw and illustrate the potential for transferring old OC into the rapidly cycling atmosphere-biosphere carbon pools.

Place, publisher, year, edition, pages
2014. Vol. 25, no 3, 172-183 p.
Keyword [en]
Ice Complex Deposits, thermal degradation, isotopic-molecular markers
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-108394DOI: 10.1002/ppp.1815ISI: 000342236300003OAI: oai:DiVA.org:su-108394DiVA: diva2:757543
Note

AuthorCount:7;

Available from: 2014-10-22 Created: 2014-10-22 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Gustafsson, Örjan
By organisation
Department of Applied Environmental Science (ITM)
In the same journal
Permafrost and Periglacial Processes
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 13 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf