Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Interaction of the dual targeting peptide of Thr-tRNA synthetase with the chloroplastic receptor Toc34 in Arabidopsis thaliana
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
2015 (English)In: FEBS Open Bio, E-ISSN 2211-5463, Vol. 5, 405-412 p.Article in journal (Refereed) Published
Abstract [en]

Organellar proteins synthesized in the cytosol are usually selective for only one destination in a cell but some proteins are localized in more than one compartment, for example in both mitochondria and chloroplasts. The mechanism of dual targeting of proteins to mitochondria and chloroplasts is yet poorly understood. Previously, we observed that the dual targeting peptide of threonyl-tRNA synthetase in Arabidopsis thaliana (AtThrRS-dTP) interacts with the mitochondrial receptor AtTom20 mainly through its N-terminal part. Here we report on the interaction of AtThrRS-dTP with the chloroplastic receptor AtToc34, presenting for the first time the mode of interactions of a dual targeting peptide with both Tom20 and Toc34. By NMR spectroscopy we investigated changes in (15)(N) HSQC spectra of AtThrRS-dTP as a function of AtToc34 concentration. Line broadening shows that the interaction with AtToc34 involves residues along the entire sequence, which is not the case for AtTom20. The N-terminal phi chi chi phi phi motif, which plays an important role in AtTom20 recognition, shows no specificity for AtToc34. These results are supported by import competition studies into both mitochondria and chloroplasts, in which the effect of peptides corresponding to different segments of AtThrRS-dTP on in vitro import of organelle specific proteins was examined. This demonstrates that the N-terminal A2-Y29 segment of AtThrRS-dTP is essential for import into both organelles, while the C-terminal L30-P60 part is important for chloroplastic import efficiency. In conclusion, we have demonstrated that the recognition of the dual targeting peptide of AtThr-tRNA synthetase is different for the mitochondrial and chloroplastic receptors. (C) 2015 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This is an open access article under the CC BY-NC-ND license.

Place, publisher, year, edition, pages
2015. Vol. 5, 405-412 p.
Keyword [en]
Dual targeting, Chloroplasts and mitochondria, Protein import, NMR, Toc34 receptor
National Category
Biochemistry and Molecular Biology
Research subject
Biochemistry; Biophysics
Identifiers
URN: urn:nbn:se:su:diva-108469DOI: 10.1016/j.fob.2015.04.014ISI: 000366999300050OAI: oai:DiVA.org:su-108469DiVA: diva2:758682
Available from: 2014-10-28 Created: 2014-10-28 Last updated: 2017-12-05Bibliographically approved
In thesis
1. Dual targeting of proteins to mitochondria and chloroplasts: Characterization of dual targeting peptides and their interaction with organellar receptors
Open this publication in new window or tab >>Dual targeting of proteins to mitochondria and chloroplasts: Characterization of dual targeting peptides and their interaction with organellar receptors
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Most mitochondrial and chloroplastic proteins are synthesized in the cytosol as precursor proteins with an N-terminal targeting peptide (TP), which directs them to the correct organelle. There is also a group of proteins that are dual targeted to mitochondria and chloroplasts using an ambiguous N-terminal dual targeting peptide (dTP). The aim of this thesis was to characterize dTPs with respect to physicochemical features, sequence patterns, structural properties and interaction with the mitochondrial and chloroplastic receptors.

We have used different statistical methods, including a multivariate data analysis (MVDA) to analyse all available dTPs and compare them to organelle-specific TPs of proteome-identified mitochondrial and chloroplastic proteins from Arabidopsis thaliana. The overall amino acid sequence patterns of dTPs were intermediate between mitochondrial targeting peptides (mTPs) and chloroplastic targeting peptides (cTPs) but the greatest differences in amino acid composition were found within the very N-terminal region of dTPs, where especially arginines are highly overrepresented in relation to cTPs. Interestingly, introducing arginines to the dTPs showed clustering towards the mTPs in silico and resulted in inhibition of chloroplast import in vitro, suggesting that positive charges in the N-terminal region of TPs may function as an 'avoidance signal' for chloroplast import.

Studies with the dTP of threonyl-tRNA synthetase (ThrRS-dTP) revealed that 60 amino acids were required to confer dual targeting. The purified ThrRS-dTP(2-60) inhibited import of organelle-specific proteins, providing evidence that dual and organelle-specific proteins use the same organellar import pathways. CD spectra indicated that ThrRS-dTP(2-60) has the propensity to form a-helical structure in membrane mimetic environments. Further, NMR investigations of interaction profiles of ThrRS-dTP(2-60) with the mitochondrial Tom20 and the chloroplastic Toc34 receptor demonstrated that the mode of the recognition of a dual targeting peptide by mitochondrial and chloroplastic receptors is different. Our studies provide thorough characterization of dTPs and present for the first time dTP-organellar receptor interactions on the molecular level.

Place, publisher, year, edition, pages
Stockholm: Department of Biochemistry and Biophysics, Stockholm University, 2014. 76 p.
National Category
Biochemistry and Molecular Biology
Research subject
Biochemistry
Identifiers
urn:nbn:se:su:diva-108471 (URN)978-91-7649-027-3 (ISBN)
Public defence
2014-12-12, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 5: Manuscript.

Available from: 2014-11-20 Created: 2014-10-28 Last updated: 2014-12-17Bibliographically approved
2. One key to two doors: Dual targeting peptides and membrane mimetics
Open this publication in new window or tab >>One key to two doors: Dual targeting peptides and membrane mimetics
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

A targeting peptide at the N-terminus of a precursor protein usually directs the protein synthesized in the cytosol to a specific organelle in the cell. Interestingly, some targeting peptides, so-called dual targeting peptides (dTPs) can target their protein to both mitochondria and chloroplasts. In order to understand the mechanism of dual targeting, a dTP from threonyl tRNA synthetase (ThrRS-dTP) was investigated as a model dTP in this thesis work. The results suggest that ThrRS-dTP is intrinsically disordered in solution but has an α-helical propensity at the N-terminal part. Tom20 and Toc34 are the two primary receptors on the outer membranes of mitochondria and chloroplasts, respectively. We found that the N-terminal half of the ThrRS-dTP sequence, including an amphiphilic helix, is important for the interaction with Tom20. This part also contains a φχχφφ motif, where φ represents a hydrophobic/aromatic residue and χ represents any amino acid residue. In contrast, neither the amphiphilic helix nor φχχφφ motif in ThrRS-dTP has any special role for its interaction with Toc34. Instead, the entire sequence of ThrRS-dTP is important for Toc34 interaction, including the C-terminal part which is barely affected by Tom20 interaction.

In addition, the role of lipids in the organelle membrane for the recognition of dual targeting peptides during protein import is also the focus of this thesis. The tendency to form α-helix in ThrRS-dTP, which is not observable in solution by CD, becomes obvious in the presence of lipids and DPC micelles. To be able to study such interactions, DMPC/DHPC isotropic bicelles under different conditions have also been characterized. These results demonstrate that bicelles with a long-chained/short-chained lipid ratio q = 0.5 and a concentration larger than 75 mM should be used to ensure that the classic bicelle morphology persists. Moreover, we developed a novel membrane mimetic system containing the galactolipids, MGDG or DGDG, which have been proposed to be important for protein import into chloroplasts. Up to 30% MGDG or DGDG lipids were able to be integrated into bicelles. The local dynamics of the galactolipids in bicelles displays two types of behavior: the sugar head-group and the glycerol part are rigid, and the acyl chains are flexible.

Place, publisher, year, edition, pages
Stockholm: Department of Biochemistry and Biophysics, Stockholm University, 2015. 69 p.
Keyword
: Dual targeting peptides, protein import, mitochondria and chloroplasts, bicelles, galactolipids, NMR spectroscopy
National Category
Biophysics
Research subject
Biophysics
Identifiers
urn:nbn:se:su:diva-116817 (URN)978-91-7649-159-1 (ISBN)
Public defence
2015-05-29, Magnéli hall, Arrhenius Laboratory, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 2: In press.

Available from: 2015-05-07 Created: 2015-04-28 Last updated: 2015-06-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Ye, WeihuaSpånning, ErikaGlaser, ElzbietaMäler, Lena
By organisation
Department of Biochemistry and Biophysics
In the same journal
FEBS Open Bio
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 92 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf