Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Phase identification and structure determination from multiphasic crystalline powder samples by rotation electron diffraction
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
Show others and affiliations
(English)In: Journal of applied crystallography, ISSN 0021-8898, E-ISSN 1600-5767Article in journal (Refereed) Accepted
Abstract [en]

Phase identification and structure characterisation are important in synthetic and material science. It is difficult to characterise the individual phases from multiphasic crystalline powder samples, especially if some of the phases are unknown. Here we describe how this problem can be solved by combining rotation electron diffraction (RED) and powder X-ray diffraction (PXRD). Four phases were identified on the same transmission electron microscopy (TEM) grid from a multiphasic sample in the Ni-Se-O-Cl system and their structures were solved from the RED data. Phase 1 (NiSeO3) was found in the Inorganic Crystal Structure Data (ICSD) database using the information from RED. Phase 2 (Ni3Se4O10Cl2) is an unknown compound but it is iso-structural to Co3Se4O10Cl2, which was recently solved by single crystal X-ray diffraction. Phase 3 (Ni5Se6O16Cl4H2) and Phase 4 (Ni5Se4O12Cl2) are new compounds. The fact that there are at least four different compounds in the as-synthesised material explains why the phase identification and structure determination could not be done only by PXRD. The RED method makes phase identification from such multiphasic powder samples much easier compared to powder X-ray diffraction. The RED method also makes structure determination of submicron-sized crystals from multiphasic samples possible.

National Category
Inorganic Chemistry
Identifiers
URN: urn:nbn:se:su:diva-108925OAI: oai:DiVA.org:su-108925DiVA: diva2:761513
Available from: 2014-11-06 Created: 2014-11-06 Last updated: 2017-12-05
In thesis
1. Characterization of crystalline materials by rotation electron diffraction: Phase identification and structure determination
Open this publication in new window or tab >>Characterization of crystalline materials by rotation electron diffraction: Phase identification and structure determination
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Electron crystallography is powerful for determination of complex structures. The newly-developed 3D electron diffraction (ED) methods make structure determination from nano- and micron-sized crystals much easier than using other methods, for example X-ray diffraction. Almost complete 3D ED data can be collected easily and fast from crystals at any arbitrary orientations. Dynamical effects are largely reduced compared to zonal ED patterns. 3D ED is powerful for phase identification and structure solution from individual nano- and micron-sized crystals, while powder X-ray diffraction (PXRD) provides information from all phases present in the samples. 3D ED methods and PXRD are complementary and their combinations are promising for studying multiphasic samples and complicated crystal structures.

In this thesis, the feasibility and capability of 3D ED methods, specifically rotation electron diffraction (RED), in phase identification and structure determination of different kinds of crystalline materials with nano- or submicrometer-sized crystals are investigated. Experimental conditions for RED data collection and data processing in relation to data quality, as well as the challenges in the applications of RED are discussed.

RED was combined with PXRD to identify phases from as-synthesized samples and to characterize atomic structures of eleven crystalline compounds. It was shown to be possible to identify as many as four distinct compounds within one sample containing submicron-sized crystals in a Ni-Se-O-Cl system. RED was also used to determine unit cell and symmetry of isoreticular metal-organic frameworks (SUMOF-7) and solve five zeolite structures with new frameworks, ITQ-51, ITQ-53, ITQ-54, EMM-23 and EMM-25 and that of a metal-organic framework (MOF), SUMOF-7I. The structure of an open-framework germanate SU-77 was solved by combining RED with PXRD. The structures of the zeolites and SU-77 were confirmed by Rietveld refinement against PXRD. High-resolution transmission electron microscopy was used to confirm the structure models of ITQ-51, EMM-25 and SUMOF-7I.

Place, publisher, year, edition, pages
Stockholm: Department of Materials and Environmental Chemistry (MMK), Stockholm University, 2014. 102 p.
Keyword
electron microscopy, phase identification, rotation electron diffraction, structure determination, three-dimensional electron diffraction
National Category
Inorganic Chemistry
Research subject
Inorganic Chemistry
Identifiers
urn:nbn:se:su:diva-108930 (URN)978-91-7649-017-4 (ISBN)
Public defence
2014-12-17, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Submitted. Paper 4: Accepted. Paper 6: Manuscript. Paper 7: Epub ahead of print. Paper 9: Manuscript. Paper 11: Manuscript.

Available from: 2014-11-25 Created: 2014-11-06 Last updated: 2015-10-27Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Yun, YifengWan, WeiSu, JieXu, HongyiHovmöller, SvenJohnsson, MatsZou, Xiaodong
By organisation
Department of Materials and Environmental Chemistry (MMK)Inorganic and Structural Chemistry
In the same journal
Journal of applied crystallography
Inorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 97 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf