Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Highly porous isoreticular lanthanide metal-organic frameworks
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

As an emerging type of porous materials, metal–organic frameworks (MOFs) have the advantages over conventional inorganic porous materials in that their structures and functions are systematically and predictably designable. Isoreticular expansion is an efficient way for systematic design and control of pore size and shape for MOFs. By using our proposed strategy, a series of highly porous isoreticular lanthanide-based metal-organic frameworks with systematic pore apertures has been obtained, which afford an isoreticular series of MIL-103 structures (termed SUMOF-7I to IV) with pore apertures ranging from 7.2 Å to 23 Å. These materials demonstrated exhibit robust architectures with permanent porosity, and exceptional thermal stability and chemical stability in various solvents. The combination of luminescence property and significant porosity of these MOFs enable them as a potential platform for multifunctional purpose.

National Category
Inorganic Chemistry
Identifiers
URN: urn:nbn:se:su:diva-108928OAI: oai:DiVA.org:su-108928DiVA: diva2:761515
Available from: 2014-11-06 Created: 2014-11-06 Last updated: 2016-01-29Bibliographically approved
In thesis
1. Characterization of crystalline materials by rotation electron diffraction: Phase identification and structure determination
Open this publication in new window or tab >>Characterization of crystalline materials by rotation electron diffraction: Phase identification and structure determination
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Electron crystallography is powerful for determination of complex structures. The newly-developed 3D electron diffraction (ED) methods make structure determination from nano- and micron-sized crystals much easier than using other methods, for example X-ray diffraction. Almost complete 3D ED data can be collected easily and fast from crystals at any arbitrary orientations. Dynamical effects are largely reduced compared to zonal ED patterns. 3D ED is powerful for phase identification and structure solution from individual nano- and micron-sized crystals, while powder X-ray diffraction (PXRD) provides information from all phases present in the samples. 3D ED methods and PXRD are complementary and their combinations are promising for studying multiphasic samples and complicated crystal structures.

In this thesis, the feasibility and capability of 3D ED methods, specifically rotation electron diffraction (RED), in phase identification and structure determination of different kinds of crystalline materials with nano- or submicrometer-sized crystals are investigated. Experimental conditions for RED data collection and data processing in relation to data quality, as well as the challenges in the applications of RED are discussed.

RED was combined with PXRD to identify phases from as-synthesized samples and to characterize atomic structures of eleven crystalline compounds. It was shown to be possible to identify as many as four distinct compounds within one sample containing submicron-sized crystals in a Ni-Se-O-Cl system. RED was also used to determine unit cell and symmetry of isoreticular metal-organic frameworks (SUMOF-7) and solve five zeolite structures with new frameworks, ITQ-51, ITQ-53, ITQ-54, EMM-23 and EMM-25 and that of a metal-organic framework (MOF), SUMOF-7I. The structure of an open-framework germanate SU-77 was solved by combining RED with PXRD. The structures of the zeolites and SU-77 were confirmed by Rietveld refinement against PXRD. High-resolution transmission electron microscopy was used to confirm the structure models of ITQ-51, EMM-25 and SUMOF-7I.

Place, publisher, year, edition, pages
Stockholm: Department of Materials and Environmental Chemistry (MMK), Stockholm University, 2014. 102 p.
Keyword
electron microscopy, phase identification, rotation electron diffraction, structure determination, three-dimensional electron diffraction
National Category
Inorganic Chemistry
Research subject
Inorganic Chemistry
Identifiers
urn:nbn:se:su:diva-108930 (URN)978-91-7649-017-4 (ISBN)
Public defence
2014-12-17, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Submitted. Paper 4: Accepted. Paper 6: Manuscript. Paper 7: Epub ahead of print. Paper 9: Manuscript. Paper 11: Manuscript.

Available from: 2014-11-25 Created: 2014-11-06 Last updated: 2015-10-27Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Bermejo Gómez, AntonioSu, JiePascanu, VladYun, YifengZheng, HaoquanChen, HongLiu, LeifengMartín-Matute, BelénZou, Xiaodong
By organisation
Inorganic and Structural ChemistryDepartment of Organic ChemistryDepartment of Materials and Environmental Chemistry (MMK)
Inorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 86 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf