Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Molecular Dynamics Simulations of the Ionic Liquid 1-n-Butyl-3-Methylimidazolium Chloride and Its Binary Mixtures with Ethanol
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry.ORCID iD: 0000-0001-8303-4481
Show others and affiliations
2014 (English)In: Journal of Chemical Theory and Computation, ISSN 1549-9618, E-ISSN 1549-9626, Vol. 10, no 10, p. 4465-4479Article in journal (Refereed) Published
Abstract [en]

Room temperature ionic liquids (ILs) of the imidazolium family have attracted much attention during the past decade for their capability to dissolve biomass. Besides experimental work, numerous compuational studies have been concerned with the physical properties of both neat ILs and their interactions with different solutes, in particular, carbohydrates. Many classical force fields designed specifically for ILs have been found to yield viscosities that are too high for the liquid state, which has been attributed to the fact that the effective charge densities are too high due to the lack of electronic polarizability. One solution to this problem has been uniform scaling of the partial charges by a scale factor in the range 0.6-0.9, depending on model. This procedure has been shown to improve the viscosity of the models, and also to positively affect other properties, such as diffusion constants and ionic conductivity. However, less attention has been paid to how this affects the overall thermodynamics of the system, and the problems it might create when the IL models are combined with other force fields (e.g., for solutes). In the present work, we employ three widely used IL force fields to simulate 1-n-buty1-3-methyl-imidazolium chloride in both the crystal and the liquid state, as well as its binary mixture with ethanol. Two approaches are used: one in which the ionic charge is retained at its full integer value and one in which the partial charges are uniformly reduced to 85%. We investigate and calculate crystal and liquid structures, molar heat capacities, heats of fusion, self-diffusion constants, ionic conductivity, and viscosity for the neat IL, and ethanol activity as a function of ethanol concentration for the binary mixture. We show that properties of the crystal are less affected by charge scaling compared to the liquid. In the liquid state, transport properties of the neat IL are generally improved by scaling, whereas values for the heat of fusion are unaffected, and results for the heat capacity are ambiguous. Neither full nor reduced charges could reproduce experimental ethanol activities for the whole range of compositions.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2014. Vol. 10, no 10, p. 4465-4479
National Category
Organic Chemistry
Identifiers
URN: urn:nbn:se:su:diva-109247DOI: 10.1021/ct500271zISI: 000343196300031OAI: oai:DiVA.org:su-109247DiVA, id: diva2:763886
Funder
Swedish Research Council
Note

AuthorCount:5;

Available from: 2014-11-17 Created: 2014-11-17 Last updated: 2018-03-14Bibliographically approved

Open Access in DiVA

fulltext(4132 kB)4 downloads
File information
File name FULLTEXT01.pdfFile size 4132 kBChecksum SHA-512
264c60cfed09a59214d7a54b0e9d141228ddf7f820a16ce8c2330b3705c331307e70bc8b4346550cbbb7f3603fe6388a2c80359ad803f72e83a4b0c32b27e9dc
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Pendrill, RobertWidmalm, Göran
By organisation
Department of Organic Chemistry
In the same journal
Journal of Chemical Theory and Computation
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 4 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 85 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf