Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the use of seminumerical simulations in predicting the 21-cm signal from the epoch of reionization
Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Show others and affiliations
2014 (English)In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 443, no 4, 2843-2861 p.Article in journal (Refereed) Published
Abstract [en]

We present a detailed comparison of three different simulations of the epoch of reionization (EoR). The radiative transfer simulation (C-2-RAY) among them is our benchmark. Radiative transfer codes can produce realistic results, but are computationally expensive. We compare it with two seminumerical techniques: one using the same haloes as C-2-RAY as its sources (Sem-Num), and one using a conditional Press-Schechter scheme (CPS+GS). These are vastly more computationally efficient than C-2-RAY, but use more simplistic physical assumptions. We evaluate these simulations in terms of their ability to reproduce the history and morphology of reionization. We find that both Sem-Num and CPS+GS can produce an ionization history and morphology that is very close to C-2-RAY, with Sem-Num performing slightly better compared to CPS+GS. We also study different redshift-space observables of the 21-cm signal from EoR: the variance, power spectrum and its various angular multipole moments. We find that both seminumerical models perform reasonably well in predicting these observables at length scales relevant for present and future experiments. However, Sem-Num performs slightly better than CPS+GS in producing the reionization history, which is necessary for interpreting the future observations. The CPS+GS scheme, however, has the advantage that it is not restricted by the mass resolution of the dark matter density field.

Place, publisher, year, edition, pages
2014. Vol. 443, no 4, 2843-2861 p.
Keyword [en]
methods: numerical, methods: statistical, cosmology: theory, dark ages, reionization, first stars, diffuse radiation
National Category
Astronomy, Astrophysics and Cosmology
Research subject
Astronomy
Identifiers
URN: urn:nbn:se:su:diva-109008DOI: 10.1093/mnras/stu1342ISI: 000342922100002OAI: oai:DiVA.org:su-109008DiVA: diva2:768878
Note

AuthorCount:7;

Available from: 2014-12-05 Created: 2014-11-10 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Majumdar, SumanMellema, GarreltJensen, Hannes
By organisation
Department of AstronomyThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Monthly notices of the Royal Astronomical Society
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 23 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf