Change search
ReferencesLink to record
Permanent link

Direct link
Comparing land use regression and dispersion modelling to assess residential exposure to ambient air pollution for epidemiological studies
Show others and affiliations
2014 (English)In: Environment International, ISSN 0160-4120, E-ISSN 1873-6750, Vol. 73, 382-392 p.Article in journal (Refereed) Published
Abstract [en]

Background: Land-use regression (LUR) and dispersion models (DM) are commonly used for estimating individual air pollution exposure in population studies. Few comparisons have however been made of the performance of these methods. Objectives: Within the European Study of Cohorts for Air Pollution Effects (ESCAPE) we explored the differences between LUR and DM estimates for NO2, PM10 and PM2.5. Methods: The ESCAPE study developed LUR models for outdoor air pollution levels based on a harmonised monitoring campaign. In thirteen ESCAPE study areas we further applied dispersion models. We compared LUR and DM estimates at the residential addresses of participants in 13 cohorts for NO2; 7 for PM10 and 4 for PM2.5. Additionally, we compared the DM estimates with measured concentrations at the 20-40 ESCAPE monitoring sites in each area. Results: The median Pearson R (range) correlation coefficients between LUR and DM estimates for the annual average concentrations of NO2, PM10 and PM2.5 were 0.75 (0.19-0.89), 0.39 (0.23-0.66) and 0.29 (0.22-0.81) for 112,971 (13 study areas), 69,591 (7) and 28,519(4) addresses respectively. The median Pearson R correlation coefficients (range) between DM estimates and ESCAPE measurements were of 0.74(0.09-0.86) for NO2; 0.58 (0.36-0.88) for PM10 and 0.58 (0.39-0.66) for PM2.5. Conclusions: LUR and dispersion model estimates correlated on average well for NO2 but only moderately for PM10 and PM2.5, with large variability across areas. DM predicted a moderate to large proportion of the measured variation for NO2 but less for PM10 and PM2.5.

Place, publisher, year, edition, pages
2014. Vol. 73, 382-392 p.
Keyword [en]
Land use regression, Dispersion modelling, Air pollution, Exposure, Cohort
National Category
Earth and Related Environmental Sciences
URN: urn:nbn:se:su:diva-111421DOI: 10.1016/j.envint.2014.08.011ISI: 000345540700043OAI: diva2:775741


Available from: 2015-01-05 Created: 2015-01-02 Last updated: 2015-01-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Johansson, Christer
By organisation
Department of Applied Environmental Science (ITM)
In the same journal
Environment International
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 32 hits
ReferencesLink to record
Permanent link

Direct link