Change search
ReferencesLink to record
Permanent link

Direct link
Atomic delay in helium, neon, argon and krypton
Stockholm University, Faculty of Science, Department of Physics. Max Planck Institute for the Physics of Complex Systems, Germany; Center for Free-Electron Laser Science, Germany.
Show others and affiliations
2014 (English)In: Journal of Physics B: Atomic, Molecular and Optical Physics, ISSN 0953-4075, E-ISSN 1361-6455, Vol. 47, no 24, 245003- p.Article in journal (Refereed) Published
Abstract [en]

Photoionization by an eXtreme UltraViolet (XUV) attosecond pulse train (APT) in the presence of an infrared pulse (RABBITT method) conveys information about the atomic photoionization delay. By taking the difference of the spectral delays between pairs of rare gases (Ar,He), (Kr,He) and (Ne,He) it is possible to eliminate in each case the larger group delay ('attochirp') associated with the APT itself and obtain the Ar, Kr and Ne Wigner delays referenced to model calculations of the He delay. In this work we measure how the delays vary as a function of XUV photon energy but we cannot determine the absolute delay difference between atoms due to lack of precise knowledge of the initial conditions. The extracted delays are compared with several theoretical predictions and the results are consistent within 30 as over the energy range from 10 to 50 eV. An 'effective' Wigner delay over all emission angles is found to be more consistent with our angle-integrated measurement near the Cooper minimum in Ar. We observe a few irregular features in the delay that may be signatures of resonances.

Place, publisher, year, edition, pages
2014. Vol. 47, no 24, 245003- p.
Keyword [en]
attosecond, delay, photoionization
National Category
Physical Sciences
URN: urn:nbn:se:su:diva-111391DOI: 10.1088/0953-4075/47/24/245003ISI: 000345593200005OAI: diva2:775836


Available from: 2015-01-05 Created: 2015-01-02 Last updated: 2015-01-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Dahlström, J. Marcus
By organisation
Department of Physics
In the same journal
Journal of Physics B: Atomic, Molecular and Optical Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 13 hits
ReferencesLink to record
Permanent link

Direct link