Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Show others and affiliations
2014 (English)In: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 90, no 10Article in journal (Refereed) Published
Abstract [en]

We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave emission energy of 10(-2) M(circle dot)c(2) at similar to 150 Hz with similar to 60 ms duration, and high-energy neutrino emission of 1051 erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below 1.6 x 10(-2) Mpc(-3) yr(-1). We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave detector era.

Place, publisher, year, edition, pages
2014. Vol. 90, no 10
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:su:diva-111919DOI: 10.1103/PhysRevD.90.102002ISI: 000345691400001OAI: oai:DiVA.org:su-111919DiVA: diva2:778315
Note

AuthorCount:1186;

Available from: 2015-01-09 Created: 2015-01-08 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Ahrens, MaryonBohm, ChristianDanninger, MatthiasFinley, ChadFlis, SamuelHulth, Per-OlofHultqvist, KlasWalck, ChristianWolf, MartinZoll, Marcel
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Physical Review D
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 41 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf