Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Crystal structure of the sodium-proton antiporter NhaA dimer and new mechanistic insights
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Show others and affiliations
2014 (English)In: The Journal of General Physiology, ISSN 0022-1295, E-ISSN 1540-7748, Vol. 144, no 6, 529-544 p.Article in journal (Refereed) Published
Abstract [en]

Sodium-proton antiporters rapidly exchange protons and sodium ions across the membrane to regulate intracellular pH, cell volume, and sodium concentration. How ion binding and release is coupled to the conformational changes associated with transport is not clear. Here, we report a crystal form of the prototypical sodium-proton antiporter NhaA from Escherichia coli in which the protein is seen as a dimer. In this new structure, we observe a salt bridge between an essential aspartic acid (Asp163) and a conserved lysine (Lys300). An equivalent salt bridge is present in the homologous transporter NapA, but not in the only other known crystal structure of NhaA, which provides the foundation of most existing structural models of electrogenic sodium-proton antiport. Molecular dynamics simulations show that the stability of the salt bridge is weakened by sodium ions binding to Asp164 and the neighboring Asp163. This suggests that the transport mechanism involves Asp163 switching between forming a salt bridge with Lys300 and interacting with the sodium ion. pK(a) calculations suggest that Asp163 is highly unlikely to be protonated when involved in the salt bridge. As it has been previously suggested that Asp163 is one of the two residues through which proton transport occurs, these results have clear implications to the current mechanistic models of sodium-proton antiport in NhaA.

Place, publisher, year, edition, pages
2014. Vol. 144, no 6, 529-544 p.
National Category
Biological Sciences
Research subject
Biochemistry
Identifiers
URN: urn:nbn:se:su:diva-111902DOI: 10.1085/jgp.201411219ISI: 000345565900006OAI: oai:DiVA.org:su-111902DiVA: diva2:779748
Note

AuthorCount:10;

Available from: 2015-01-13 Created: 2015-01-08 Last updated: 2017-09-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Uzdavinys, Povilasvon Ballmoos, ChristophDrew, David
By organisation
Department of Biochemistry and Biophysics
In the same journal
The Journal of General Physiology
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 56 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf