Change search
ReferencesLink to record
Permanent link

Direct link
Population-level effects in Amphiascus tenuiremis: Contrasting matrix- and individual-based population models
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
2014 (English)In: Aquatic Toxicology, ISSN 0166-445X, E-ISSN 1879-1514, Vol. 157, 207-214 p.Article in journal (Refereed) Published
Abstract [en]

Environmental risk assessment (ERA) is generally based on individual-level endpoints, even though protection goals in ERA intend higher biological levels. Population models have the potential to translate individual-level endpoints to population-level responses and range from simple demographic equations to highly complex individual based models (IBMs). The aims of the current study were to develop a matrix model (MM) with the structure and parameterization proposed in the draft OECD guideline Harpacticoid copepod development and reproduction test with Amphiascus tenuiremis, and an IBM with the same data requirements. Experimental data from lindane exposure from validation studies of the OECD guideline was projected to the population level. Lindane does not only cause effects on survival and reproduction, but also on the time it takes to develop from larvae to adults. The two model approaches were contrasted in terms of their ability to properly project these effects on development. The MM projected smaller effects of the lindane treatments on population growth rate compared to the IBM since in its proposed structure, it did not include the delay in development explicitly. Population-level EC10 for population growth rate in the IBM was at the same level as the most sensitive individual-level endpoint, whereas the EC10 from the MM was not as sensitive. Based on these findings, our conclusion is that the IBM (or an improved MM) should be used for datasets including shifts in development, whereas the simpler MM is sufficient for datasets where only mortality and reproduction are affected, or as a screening tool in lower-tier population-level ERA.

Place, publisher, year, edition, pages
2014. Vol. 157, 207-214 p.
Keyword [en]
Population growth rate, Population dynamics, Lefkovitch matrix model, Individual-based model, Harpacticoid copepods, Lindane
National Category
Earth and Related Environmental Sciences
URN: urn:nbn:se:su:diva-112901DOI: 10.1016/j.aquatox.2014.10.004ISI: 000346547800022OAI: diva2:782967


Available from: 2015-01-23 Created: 2015-01-19 Last updated: 2015-01-23Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Breitholtz, Magnus
By organisation
Department of Applied Environmental Science (ITM)
In the same journal
Aquatic Toxicology
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 25 hits
ReferencesLink to record
Permanent link

Direct link