Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ten years after: Impact of recent research in photon and electron beam dosimetry on the IAEA TRS-398 Code of Practice
Stockholm University, Faculty of Science, Department of Physics. Karolinska Institutet, Sweden.
Stockholm University, Faculty of Science, Department of Physics. Karolinska Institutet, Sweden.
2011 (English)In: Standards, Applications and Quality Assurance in Medical Radiation Dosimetry (IDOS): Proceedings of an International Symposium. V. 1 / [ed] Benmakhlouf, H.; Andreo, P., Vienna: International Atomic Energy Agency, 2011, , 14 p.139-152 p.Conference paper, Published paper (Refereed)
Place, publisher, year, edition, pages
Vienna: International Atomic Energy Agency, 2011. , 14 p.139-152 p.
Series
Proceedings series / International Atomic Energy Agency, ISSN 0074-1884
National Category
Other Physics Topics
Research subject
Medical Radiation Physics
Identifiers
URN: urn:nbn:se:su:diva-114132ISBN: 978-92-0-116210-6 (print)OAI: oai:DiVA.org:su-114132DiVA: diva2:789933
Conference
International Symposium on Standards, Applications and Quality Assurance in Medical Radiation Dosimetry, Vienna, Austria, 9-12 November 2010
Available from: 2015-02-20 Created: 2015-02-20 Last updated: 2015-03-05Bibliographically approved
In thesis
1. Key Data for the Reference and Relative Dosimetry of Radiotherapy and Diagnostic and Interventional Radiology Beams
Open this publication in new window or tab >>Key Data for the Reference and Relative Dosimetry of Radiotherapy and Diagnostic and Interventional Radiology Beams
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Accurate dosimetry is a fundamental requirement for the safe and efficient use of radiation in medical applications. International Codes of Practice, such as IAEA TRS-398 (2000) for radiotherapy beams and IAEA TRS-457 (2007) for diagnostic radiology beams, provide the necessary formulation for reference and relative dosimetry and the data required for their implementation. Research in recent years has highlighted the shortage of such data for radiotherapy small photon beams and for surface dose estimations in diagnostic and interventional radiology, leading to significant dosimetric errors that in some instances have jeopardized patient’s safety and treatment efficiency.

The aim of this thesis is to investigate and determine key data for the reference and relative dosimetry of radiotherapy and radiodiagnostics beams. For that purpose the Monte Carlo system PENELOPE has been used to simulate the transport of radiation in different media and a number of experimental determinations have also been made. A review of the key data for radiotherapy beams published after the release of IAEA TRS-398 was conducted, and in some cases the considerable differences found were questioned under the criterion of data consistency throughout the dosimetry chain (from standards laboratories to the user). A modified concept of output factor, defined in a new international formalism for the dosimetry of small photon beams, requires corrections to dosimeter readings for the dose determination in small beams used clinically. In this work, output correction factors were determined, for Varian Clinac 6 MV photon beams and Leksell Gamma Knife Perfexion 60Co gamma-ray beams, for a large number of small field detectors, including air and liquid ionization chambers, shielded and unshielded silicon diodes and diamond detectors, all of which were simulated by Monte Carlo with great detail.

Backscatter factors and ratios of mass energy-absorption coefficients required for surface (skin) determinations in diagnostic and interventional radiology applications were also determined, as well as their extension to account for non-standard phantom thicknesses and materials. A database of these quantities was created for a broad range of monoenergetic photon beams and computer codes developed to convolve the data with clinical spectra, thus enabling the determination of key data for arbitrary beam qualities.

Data presented in this thesis has been contributed to the IAEA international dosimetry recommendations for small radiotherapy beams and for diagnostic radiology in paediatric patients.

Place, publisher, year, edition, pages
Stockholm: Department of Physics, Stockholm University, 2015. 68 p.
Keyword
Backscatter factors, Diagnostic radiology dosimetry, Mass energy-absorption coefficients, Monte Carlo, Output correction factors, Radiotherapy dosimetry, Reference dosimetry, Relative dosimetry, Small photon fields
National Category
Physical Sciences
Research subject
Medical Radiation Physics
Identifiers
urn:nbn:se:su:diva-114413 (URN)978-91-7649-111-9 (ISBN)
Public defence
2015-04-22, Föreläsningssalen, (P1:01), Radiumhemmet, Karolinska Universitetssjukhuset, Solna, 14:30 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 6: Manuscript.

Available from: 2015-03-31 Created: 2015-03-03 Last updated: 2015-05-12Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Benmakhlouf, HamzaAndreo, Pedro
By organisation
Department of Physics
Other Physics Topics

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 93 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf