Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The 3R polymorph of CaSi2
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Show others and affiliations
2015 (English)In: Journal of Solid State Chemistry, ISSN 0022-4596, E-ISSN 1095-726X, Vol. 222, 18-24 p.Article in journal (Refereed) Published
Abstract [en]

The Zintl phase CaSi2 commonly occurs in the 6R structure where puckered hexagon layers of Si atoms are stacked in an AA'BB'CC' fashion. In this study we show that sintering of CaSi2 in a hydrogen atmosphere (30 bar) at temperatures between 200 and 700 degrees C transforms 6R-CaSi2 quantitatively into 3R-CaSi2. In the 3R polymorph (space group R-3m (no. 166), a=3.8284(1), c=15.8966(4), Z=3) puckered hexagon layers are stacked in an ABC fashion. The volume per formula unit is about 3% larger compared to 6R-CaSi2. First principles density functional calculations reveal that 6R and 3R-CaSi2 are energetically degenerate at zero Kelvin. With increasing temperature 6R-CaSi2 stabilizes over 3R because of its higher entropy. This suggests that 3R-CaSi2 should revert to 6R at elevated temperatures, which however is not observed up to 800 degrees C. 3R-CaSi2 may be stabilized by small amounts of incorporated hydrogen and/or defects.

Place, publisher, year, edition, pages
2015. Vol. 222, 18-24 p.
Keyword [en]
Calcium disilicide, Zintl phases, Polymorphism, Structural stability
National Category
Chemical Sciences
Research subject
Materials Chemistry
Identifiers
URN: urn:nbn:se:su:diva-114349DOI: 10.1016/j.jssc.2014.10.033ISI: 000348633800004OAI: oai:DiVA.org:su-114349DiVA: diva2:793688
Note

AuthorCount:5;

Available from: 2015-03-09 Created: 2015-03-02 Last updated: 2017-04-27Bibliographically approved
In thesis
1. Hydrogen incorporation in Zintl phases and transition metal oxides- new environments for the lightest element in solid state chemistry
Open this publication in new window or tab >>Hydrogen incorporation in Zintl phases and transition metal oxides- new environments for the lightest element in solid state chemistry
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This PhD thesis presents investigations of hydrogen incorporation in Zintl phases and transition metal oxides. Hydrogenous Zintl phases can serve as important model systems for fundamental studies of hydrogen-metal interactions, while at the same time hydrogen-induced chemical structure and physical property changes provide exciting prospects for materials science. Hydrogen incorporation in transition metal oxides leads to oxyhydride systems in which O and H together form an anionic substructure. The H species in transition metal oxides may be highly mobile, making these materials interesting precursors toward other mixed anion systems. 

Zintl phases consist of an active metal, M (alkali, alkaline earth or rare earth) and a more electronegative p-block metal or semimetal component, E (Al, Ga, Si, Ge, etc.). When Zintl phases react with hydrogen, they can either form polyanionic hydrides or interstitial hydrides, undergo full hydrogenations to complex hydrides, or oxidative decomposition to more E-rich Zintl phases. The Zintl phases investigated here comprised the CaSi2, Eu3Si4, ASi (A= K, Rb) and GdGa systems which were hydrogenated at various temperature, H2 pressure, and dwelling time conditions. For CaSi2, a regular phase transition from the conventional 6R to the rare 3R took place and no hydride formation was observed. In contrast, GdGa and Eu3Si4 were very susceptible to hydrogen uptake. Already at temperatures below 100 ºC the formation of hydrides GdGaH2-x and Eu3Si4H2+x was observed. The magnetic properties of the hydrides (antiferromagnetic) differ radically from that of the Zintl phase precursor (ferromagnetic). Upon hydrogenating ASi at temperatures around 100 oC, silanides ASiH3 formed which contain discrete complex ion units SiH3-. The much complicated β – α order-disorder phase transition in ASiH3 was evaluated with neutron powder diffraction (NPD), 2H NMR and heat capacity measurements. 

A systematic study of the hydride reduction of BaTiO3 leading to perovskite oxyhydrides BaTiO3-xHx was done. A broad range of reducing agents including NaH, MgH2, CaH2, LiAlH4 and NaBH4 was employed and temperature and dwelling conditions for hydride reduction examined. Samples were characterized by X-ray powder diffraction (XRPD), thermal gravimetric analysis and 1H NMR. The concentration of H that can be incorporated in BaTiO3-xHx was found to be very low, which is in contrast with earlier reports. Instead hydride reduction leads to a high concentration of O vacancies in the reduced BaTiO3. The highly O-deficient, disordered, phases - BaTiO3-xHy(x-y) with x up to 0.6 and y in a range 0.05 – 0.2 and (x-y) > y – are cubic and may represent interesting materials with respect to electron and ion transport as well as catalysis.

Place, publisher, year, edition, pages
Stockholm: Department of Materials and Environmental Chemistry (MMK), Stockholm University, 2017. 86 p.
Keyword
Zintl phases, metal hydrides, transition metal oxyhydrides, XRPD, NPD, Rietveld refinement
National Category
Materials Chemistry
Research subject
Materials Chemistry
Identifiers
urn:nbn:se:su:diva-141588 (URN)978-91-7649-789-0 (ISBN)978-91-7649-790-6 (ISBN)
Public defence
2017-05-29, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 5: Manuscript.

Available from: 2017-05-04 Created: 2017-04-07 Last updated: 2017-04-27Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Nedumkandathil, RejiGrins, JekabsSpektor, KristinaHäussermann, Ulrich
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Journal of Solid State Chemistry
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 121 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf