Change search
ReferencesLink to record
Permanent link

Direct link
Oxygenation of an anoxic fjord basin strongly stimulates benthic denitrification and DNRA
Stockholm University, Faculty of Science, Department of Geological Sciences.
Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
National Category
Research subject
URN: urn:nbn:se:su:diva-115044OAI: diva2:795543
Available from: 2015-03-16 Created: 2015-03-16 Last updated: 2016-01-29Bibliographically approved
In thesis
1. Control factors of the marine nitrogen cycle: The role of meiofauna, macrofauna, oxygen and aggregates
Open this publication in new window or tab >>Control factors of the marine nitrogen cycle: The role of meiofauna, macrofauna, oxygen and aggregates
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The ocean is the most extended biome present on our planet. Recent decades have seen a dramatic increase in the number and gravity of threats impacting the ocean, including discharge of pollutants, cultural eutrophication and spread of alien species. It is essential therefore to understand how different impacts may affect the marine realm, its life forms and biogeochemical cycles. The marine nitrogen cycle is of particular importance because nitrogen is the limiting factor in the ocean and a better understanding of its reaction mechanisms and regulation is indispensable. Furthermore, new nitrogen pathways have continuously been described. The scope of this project was to better constrain cause-effect mechanisms of microbially mediated nitrogen pathways, and how these can be affected by biotic and abiotic factors.

This thesis demonstrates that meiofauna, the most abundant animal group inhabiting the world’s seafloors, considerably alters nitrogen cycling by enhancing nitrogen loss from the system. In contrast, larger fauna such as the polychaete Marenzelleria spp. enhance nitrogen retention, when they invade eutrophic Baltic Sea sediments. Sediment anoxia, caused by nutrient excess, has negative consequences for ecosystem processes such as nitrogen removal because it stops nitrification, which in turn limits both denitrification and anammox. This was the case of Himmerfjärden and Byfjord, two estuarine systems affected by anthropogenic activities, such as treated sewage discharges. When Byfjord was artificially oxygenated, nitrate reduction mechanisms started just one month after pumping. However, the balance between denitrification and nitrate ammonification did not favor either nitrogen removal or its retention.

Anoxia is also present in aggregates of the filamentous cyanobacteria Nodularia spumigena. This thesis shows that even in fully oxic waters, millimetric aggregates can host anaerobic nitrogen processes, with clear implications for the pelagic compartment. While the thesis contributed to our knowledge on marine nitrogen cycling, more data need to be collected and experiments performed in order to understand key processes and regulation mechanisms of element cycles in the ocean. In this way, stakeholders may follow and take decisions in order to limit the continuous flow of human metabolites and impacts on the marine environment.

Place, publisher, year, edition, pages
Stockholm: Department of Geological Sciences, Stockholm University, 2015. 35 p.
Meddelanden från Stockholms universitets institution för geologiska vetenskaper, 357
Nitrogen cycle, denitrification, DNRA, anammox, anoxia, hypoxia, eutrophication, meiofauna, macrofauna, aggregates, cyanobacteria, Baltic Sea
National Category
Research subject
urn:nbn:se:su:diva-115036 (URN)978-91-7649-129-4 (ISBN)
Public defence
2015-04-29, Nordenskiöldsalen, Geovetenskapens hus, Svante Arrhenius väg 12, Stockholm, 13:00 (English)
Baltic Ecosystem Adaptive Management (BEAM)Swedish Research Council Formas

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 2: Manuscript.

Available from: 2015-04-07 Created: 2015-03-16 Last updated: 2015-07-01Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Bonaglia, StefanoViktorsson, Lena
By organisation
Department of Geological SciencesStockholm University Baltic Sea Centre

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 168 hits
ReferencesLink to record
Permanent link

Direct link