Change search
ReferencesLink to record
Permanent link

Direct link
Scientific rationale for Saturn's in situ exploration
Show others and affiliations
2014 (English)In: Planetary and Space Science, ISSN 0032-0633, E-ISSN 1873-5088, Vol. 104, 29-47 p.Article in journal (Refereed) Published
Abstract [en]

Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases' abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. This paper describes the main scientific goals to be addressed by the future in situ exploration of Saturn placing the Galileo probe exploration of Jupiter in a broader context and before the future probe exploration of the more remote ice giants. In situ exploration of Saturn's atmosphere addresses two broad themes that are discussed throughout this paper: first, the formation history of our solar system and second, the processes at play in planetary atmospheres. In this context, we detail the reasons why measurements of Saturn's bulk elemental and isotopic composition would place important constraints on the volatile reservoirs in the protosolar nebula. We also show that the in situ measurement of CO (or any other disequilibrium species that is depleted by reaction with water) in Saturn's upper troposphere may help constraining its bulk O/H ratio. We compare predictions of Jupiter and Saturn's bulk compositions from different formation scenarios, and highlight the key measurements required to distinguish competing theories to shed light on giant planet formation as a common process in planetary systems with potential applications to most extrasolar systems. In situ measurements of Saturn's stratospheric and tropospheric dynamics, chemistry and cloud-forming processes will provide access to phenomena unreachable to remote sensing studies. Different mission architectures are envisaged, which would benefit from strong international collaborations, all based on an entry probe that would descend through Saturn's stratosphere and troposphere under parachute down to a minimum of 10 bar of atmospheric pressure. We finally discuss the science payload required on a Saturn probe to match the measurement requirements.

Place, publisher, year, edition, pages
2014. Vol. 104, 29-47 p.
Keyword [en]
Entry probe, Saturn atmosphere, Giant planet formation, Solar system formation, In situ measurements, Elemental and isotopic composition
National Category
Astronomy, Astrophysics and Cosmology
URN: urn:nbn:se:su:diva-113713DOI: 10.1016/j.pss.2014.09.014ISI: 000347585400004OAI: diva2:796343


Available from: 2015-03-18 Created: 2015-02-09 Last updated: 2015-03-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Geppertt, Wolf D.
By organisation
Department of Physics
In the same journal
Planetary and Space Science
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 17 hits
ReferencesLink to record
Permanent link

Direct link