Change search
ReferencesLink to record
Permanent link

Direct link
A modeling assessment of the physicochemical properties and environmental fate of emerging and novel per- and polyfluoroalkyl substances
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).ORCID iD: 0000-0002-7035-8660
2015 (English)In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 505, 981-991 p.Article in journal (Refereed) Published
Abstract [en]

Long-chain perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs) are persistent, bioaccumulative, and toxic contaminants that are globally present in the environment, wildlife and humans. Phase-out actions and use restrictions to reduce the environmental release of long-chain PFCAs, PFSAs and their precursors have been taken since 2000. In particular, long-chain poly- and perfluoroalkyl substances (PFASs) are being replaced with shorter-chain homologues or other fluorinated or non-fluorinated alternatives. A key question is: are these alternatives, particularly the structurally similar fluorinated alternatives, less hazardous to humans and the environment than the substances they replace? Several fluorinated alternatives including perfluoroether carboxylic acids (PFECAs) and perfluoroether sulfonic adds (PFESAs) have beet recently identified. However, the scarcity of experimental data prevents hazard and risk assessments for these substances. In this study, we use state-of-the-art in silico tools to estimate key properties of these newly identified fluorinated alternatives. [i] COSMOtherm and SPARC ate used to estimate physicochemical properties. The US EPA EPISuite software package is used to predict degradation half-lives in air, water and soil. [ii] In combination with estimated chemical properties, a fugacity-based multimedia mass-balance unit-world model the OECD Overall Persistence (Pov) and Long-Range Transport Potential (LRTP) Screening Tool is used to assess the likely environmental fate of these alternatives. Even though the fluorinated alternatives contain some structural differences, their physicochemical properties are not significantly different from those of their predecessors. Furthermore, most of the alternatives are estimated to be similarly persistent and mobile in the environment as the long-chain PFASs. The models therefore predict that the fluorinated alternatives will become globally distributed in the environment similar to their predecessors. Although such in silico methods are coupled with uncertainties, this preliminary assessment provides enough cause for concern to warrant experimental work to better determine the properties of these fluorinated alternatives.

Place, publisher, year, edition, pages
2015. Vol. 505, 981-991 p.
Keyword [en]
Hazard assessment, Environmental fate, Fluorinated alternative, In silico tool, PFOS, PFOA
National Category
Earth and Related Environmental Sciences
URN: urn:nbn:se:su:diva-114232DOI: 10.1016/j.scitotenv.2014.10.062ISI: 000347654900096PubMedID: 25461098OAI: diva2:796937


Available from: 2015-03-20 Created: 2015-02-25 Last updated: 2015-03-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Gomis, Melissa InesCousins, Ian T.
By organisation
Department of Applied Environmental Science (ITM)
In the same journal
Science of the Total Environment
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 39 hits
ReferencesLink to record
Permanent link

Direct link