References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt147",{id:"formSmash:upper:j_idt147",widgetVar:"widget_formSmash_upper_j_idt147",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt148_j_idt150",{id:"formSmash:upper:j_idt148:j_idt150",widgetVar:"widget_formSmash_upper_j_idt148_j_idt150",target:"formSmash:upper:j_idt148:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Estimation of the variance effective population size in age structured populationsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2015 (English)In: Theoretical Population Biology, ISSN 0040-5809, E-ISSN 1096-0325, Vol. 101, 9-23 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2015. Vol. 101, 9-23 p.
##### Keyword [en]

Variance effective population size, Temporal method, Effective number of independent alleles, Overlapping generations, Confidence interval
##### National Category

Probability Theory and Statistics
##### Research subject

Mathematical Statistics
##### Identifiers

URN: urn:nbn:se:su:diva-115417DOI: 10.1016/j.tpb.2015.02.003ISI: 000352828400002OAI: oai:DiVA.org:su-115417DiVA: diva2:797553
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt388",{id:"formSmash:j_idt388",widgetVar:"widget_formSmash_j_idt388",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt394",{id:"formSmash:j_idt394",widgetVar:"widget_formSmash_j_idt394",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt400",{id:"formSmash:j_idt400",widgetVar:"widget_formSmash_j_idt400",multiple:true});
Available from: 2015-03-24 Created: 2015-03-24 Last updated: 2015-05-18Bibliographically approved
##### In thesis

The variance effective population size for age structured populations is generally hard to estimate and the temporal method often gives biased estimates. Here, we give an explicit expression for a correction factor which, combined with estimates from the temporal method, yield approximately unbiased estimates. The calculation of the correction factor requires knowledge of the age specific offspring distribution and survival probabilities as well as possible correlation between survival and reproductive success. In order to relax these requirements, we show that only first order moments of these distributions need to be known if the time between samples is large, or individuals from all age classes which reproduce are sampled. A very explicit approximate expression for the asymptotic coefficient of standard deviation of the estimator is derived, and it can be used to construct confidence intervals and optimal ways of weighting information from different markers. The asymptotic coefficient of standard deviation can also be used to design studies and we show that in order to maximize the precision for a given sample size, individuals from older age classes should be sampled since their expected variance of allele frequency change is higher and easier to estimate. However, for populations with fluctuating age class sizes, the accuracy of the method is reduced when samples are taken from older age classes with high demographic variation. We also present a method for simultaneous estimation of the variance effective and census population size.

1. Inbreeding, Effective Population Sizes and Genetic Differentiation: A Mathematical Analysis of Structured Populations$(function(){PrimeFaces.cw("OverlayPanel","overlay798994",{id:"formSmash:j_idt670:0:j_idt674",widgetVar:"overlay798994",target:"formSmash:j_idt670:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1106",{id:"formSmash:lower:j_idt1106",widgetVar:"widget_formSmash_lower_j_idt1106",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1107_j_idt1109",{id:"formSmash:lower:j_idt1107:j_idt1109",widgetVar:"widget_formSmash_lower_j_idt1107_j_idt1109",target:"formSmash:lower:j_idt1107:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});