Change search
ReferencesLink to record
Permanent link

Direct link
The role of aerosol in altering North Atlantic atmospheric circulation in winter and its impact on air quality
Stockholm University, Faculty of Science, Department of Meteorology . European Commission, Joint Research Centre, Institute for Environment and Sustainability, Italy.
Stockholm University, Faculty of Science, Department of Meteorology .
Show others and affiliations
2015 (English)In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 15, no 4, 1725-1743 p.Article in journal (Refereed) Published
Abstract [en]

Numerical model scenarios of future climate depict a global increase in temperatures and changing precipitation patterns, primarily driven by increasing greenhouse gas (GHG) concentrations. Aerosol particles also play an important role by altering the Earth's radiation budget and consequently surface temperature. Here, we use the general circulation aerosol model ECHAM5-HAM, coupled to a mixed layer ocean model, to investigate the impacts of future air pollution mitigation strategies in Europe on winter atmospheric circulation over the North Atlantic. We analyse the extreme case of a maximum feasible end-of-pipe reduction of aerosols in the near future (2030), in combination with increasing GHG concentrations. Our results show a more positive North Atlantic Oscillation (NAO) mean state by 2030, together with a significant eastward shift of the southern centre of action of sea-level pressure (SLP). Moreover, we show a significantly increased blocking frequency over the western Mediterranean. By separating the impacts of aerosols and GHGs, our study suggests that future aerosol abatement may be the primary driver of both the eastward shift in the southern SLP centre of action and the increased blocking frequency over the western Mediterranean. These concomitant modifications of the atmospheric circulation over the Euro-Atlantic sector lead to more stagnant weather conditions that favour air pollutant accumulation, especially in the western Mediterranean sector. Changes in atmospheric circulation should therefore be included in future air pollution mitigation assessments. The indicator-based evaluation of atmospheric circulation changes presented in this work will allow an objective first-order assessment of the role of changes in wintertime circulation on future air quality in other climate model simulations.

Place, publisher, year, edition, pages
2015. Vol. 15, no 4, 1725-1743 p.
National Category
Meteorology and Atmospheric Sciences
URN: urn:nbn:se:su:diva-115471DOI: 10.5194/acp-15-1725-2015ISI: 000349800500010OAI: diva2:798275


Available from: 2015-03-26 Created: 2015-03-24 Last updated: 2015-03-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Pausata, Francesco Salvatore RoccoMessori, Gabriele
By organisation
Department of Meteorology
In the same journal
Atmospheric Chemistry And Physics
Meteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 86 hits
ReferencesLink to record
Permanent link

Direct link