Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Efficient photochemical water oxidation by a dinuclear molecular ruthenium complex
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry. Huazhong University of Science & Technology, People's Republic of China.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Show others and affiliations
2015 (English)In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 51, no 10, 1862-1865 p.Article in journal (Refereed) Published
Abstract [en]

Herein is described the preparation of a dinuclear molecular Ru catalyst for H2O oxidation. The prepared catalyst mediates the photochemical oxidation of H2O with an efficiency comparable to state-of-the-art catalysts.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2015. Vol. 51, no 10, 1862-1865 p.
National Category
Chemical Sciences
Research subject
Organic Chemistry
Identifiers
URN: urn:nbn:se:su:diva-114259DOI: 10.1039/c4cc08606fISI: 000348213200020PubMedID: 25525645OAI: oai:DiVA.org:su-114259DiVA: diva2:798474
Funder
Knut and Alice Wallenberg FoundationSwedish Research CouncilCarl Tryggers foundation Swedish Energy Agency
Note

AuthorCount:8;

Available from: 2015-03-26 Created: 2015-02-25 Last updated: 2017-12-04Bibliographically approved
In thesis
1. Development of Ruthenium Catalysts for Water Oxidation
Open this publication in new window or tab >>Development of Ruthenium Catalysts for Water Oxidation
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

An increasing global energy demand requires alternative fuel sources. A promising method is artificial photosynthesis. Although, the artificial processes are different from the natural photosynthetic process, the basic principles are the same, i.e. to split water and to convert solar energy into chemical energy. The energy is stored in bonds, which can at a later stage be released upon combustion. The bottleneck in the artificial systems is the water oxidation. The aim of this research has been to develop catalysts for water oxidation that are stable, yet efficient. The molecular catalysts are comprised of organic ligands that ultimately are responsible for the catalyst structure and activity. These ligands are often based on polypyridines or other nitrogen-containing aromatic compounds. This thesis describes the development of molecular ruthenium catalysts and the evaluation of their ability to mediate chemical and photochemical oxidation of water. Previous work from our group has shown that the introduction of negatively charged groups into the ligand frameworks lowers the redox potentials of the metal complexes. This is beneficial as it makes it possible to drive water oxidation with [Ru(bpy)3]3+-type oxidants (bpy = 2,2’-bipyridine), which can be photochemically generated from the corresponding [Ru(bpy)3]2+ complex. Hence, all the designed ligands herein contain negatively charged groups in the coordination site for ruthenium.

The first part of this thesis describes the development of two mononuclear ruthenium complexes and the evaluation of these for water oxidation. Both complexes displayed low redox potentials, allowing for water oxidation to be driven either chemically or photochemically using the mild one-electron oxidant [Ru(bpy)3]3+.

The second part is a structure–activity relationship study on several analogues of mononuclear ruthenium complexes. The complexes were active for water oxidation and the redox potentials of the analogues displayed a linear relationship with the Hammet σmeta parameter. It was also found that the complexes form high-valent Ru(VI) species, which are responsible for mediating O–O bond formation.

The last part of the thesis describes the development of a dinuclear ruthenium complex and the catalytic performance for chemical and photochemical water oxidation. It was found that the complex undergoes O–O bond formation via a bridging peroxide intermediate, i.e. an I2M–type mechanism.

Place, publisher, year, edition, pages
Stockholm: Department of Organic Chemistry, Stockholm University, 2016. 67 p.
Keyword
homogeneous catalysis, O-O bond formation, photocatalysis, ruthenium, water oxidation
National Category
Organic Chemistry
Research subject
Organic Chemistry
Identifiers
urn:nbn:se:su:diva-134824 (URN)978-91-7649-508-7 (ISBN)978-91-7649-509-4 (ISBN)
Public defence
2016-12-09, Magnéli Hall, Arrhenius Laboratory, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2016-11-16 Created: 2016-10-19 Last updated: 2016-11-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Laine, Tanja M.Kärkäs, Markus D.Liao, Rong-ZhenÅkermark, TorbjörnLee, Bao-LinKarlsson, Erik A.Siegbahn, Per E. M.Åkermark, Björn
By organisation
Department of Organic Chemistry
In the same journal
Chemical Communications
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 3057 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf