Change search
ReferencesLink to record
Permanent link

Direct link
Mechanism of [3+2] Cycloaddition of Alkynes to the [Mo3S4(acac)(3)(py)(3)][PF6] Cluster
Show others and affiliations
2015 (English)In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 21, no 7, 2835-2844 p.Article in journal (Refereed) Published
Abstract [en]

A study, involving kinetic measurements on the stopped-flow and conventional UV/Vis timescales, ESI-MS, NMR spectroscopy and DFT calculations, has been carried out to understand the mechanism of the reaction of [Mo3S4(acac)(3)(py)(3)][PF6] ([1]PF6; acac = acetylacetonate, py = pyridine) with two RC equivalent to CR alkynes (R = CH2OH (btd), COOH (adc)) in CH3CN. Both reactions show polyphasic kinetics, but experimental and computational data indicate that alkyne activation occurs in a single kinetic step through a concerted mechanism similar to that of organic [3+2] cycloaddition reactions, in this case through the interaction with one Mo(mu-S)(2) moiety of [1](+). The rate of this step is three orders of magnitude faster for adc than that for btd, and the products initially formed evolve in subsequent steps into compounds that result from substitution of py ligands or from reorganization to give species with different structures. Activation strain analysis of the [3+2] cycloaddition step reveals that the deformation of the two reactants has a small contribution to the difference in the computed activation barriers, which is mainly associated with the change in the extent of their interaction at the transition-state structures. Subsequent frontier molecular orbital analysis shows that the carboxylic acid substituents on adc stabilize its HOMO and LUMO orbitals with respect to those on btd due to better electron-withdrawing properties. As a result, the frontier molecular orbitals of the cluster and alkyne become closer in energy; this allows a stronger interaction.

Place, publisher, year, edition, pages
2015. Vol. 21, no 7, 2835-2844 p.
Keyword [en]
activation strain model, C-S bond formation, density functional calculations, kinetics, reaction mechanisms
National Category
Organic Chemistry
URN: urn:nbn:se:su:diva-115687DOI: 10.1002/chem.201405518ISI: 000349384300017PubMedID: 25529428OAI: diva2:799329


Available from: 2015-03-30 Created: 2015-03-27 Last updated: 2015-03-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed
By organisation
Department of Organic Chemistry
In the same journal
Chemistry - A European Journal
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 37 hits
ReferencesLink to record
Permanent link

Direct link