Change search
ReferencesLink to record
Permanent link

Direct link
Size-resolved observations of refractory black carbon particles in cloud droplets at a marine boundary layer site
Show others and affiliations
2015 (English)In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 15, no 3, 1367-1383 p.Article in journal (Refereed) Published
Abstract [en]

Size-resolved observations of aerosol particles and cloud droplet residuals were studied at a marine boundary layer site (251ma.m.s.l.) in La Jolla, San Diego, California, during 2012. A counterflow virtual impactor (CVI) was used as the inlet to sample cloud residuals while a total inlet was used to sample both cloud residuals and interstitial particles. Two cloud events totaling 10 h of in-cloud sampling were analyzed. Based on bulk aerosol particle concentrations, mass concentrations of refractory black carbon (rBC), and back trajectories, the two air masses sampled were classified as polluted marine air. Since the fraction of cloud droplets sampled by the CVI was less than 100 %, the measured activated fractions of rBC should be considered as lower limits to the total fraction of rBC activated during the two cloud events. Size distributions of rBC and a coating analysis showed that sub-100 nm rBC cores with relatively thick coatings were incorporated into the cloud droplets (i.e., 95 nm rBC cores with median coating thicknesses of at least 65 nm were incorporated into the cloud droplets). Measurements also show that the coating volume fraction of rBC cores is relatively large for sub-100 nm rBC cores. For example, the median coating volume fraction of 95 nm rBC cores incorporated into cloud droplets was at least 0.9, a result that is consistent with kappa-Kohler theory. Measurements of the total diameter of the rBC-containing particles (rBC core and coating) suggest that the total diameter of rBC-containing particles needed to be at least 165 nm to be incorporated into cloud droplets when the core rBC diameter is >= 85 nm. This result is consistent with previous work that has shown that particle diameter is important for activation of non-rBC particles. The activated fractions of rBC determined from the measurements ranged from 0.01 to 0.1 for core rBC diameters ranging from 70 to 220 nm. This type of data is useful for constraining models used for predicting rBC concentrations in the atmosphere.

Place, publisher, year, edition, pages
2015. Vol. 15, no 3, 1367-1383 p.
National Category
Earth and Related Environmental Sciences
URN: urn:nbn:se:su:diva-115958DOI: 10.5194/acp-15-1367-2015ISI: 000349799500015OAI: diva2:801388


Available from: 2015-04-09 Created: 2015-04-08 Last updated: 2015-04-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Noone, Kevin J.
By organisation
Department of Applied Environmental Science (ITM)
In the same journal
Atmospheric Chemistry And Physics
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 25 hits
ReferencesLink to record
Permanent link

Direct link