Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Implications of odd oxygen observations by the TIMED/SABER instrument for lower D region ionospheric modeling
Show others and affiliations
2015 (English)In: Journal of Atmospheric and Solar-Terrestrial Physics, ISSN 1364-6826, E-ISSN 1879-1824, Vol. 124, 63-70 p.Article in journal (Refereed) Published
Abstract [en]

We document the variability in atomic oxygen inferred by the Sounding of the Atmosphere with Broadband Emission Radiometry (SABER) instrument on the NASA/TIMED satellite in the lower mesosphere (50-80 km altitude) according to its diurnal, latitudinal, seasonal and solar cycle components. The dominant variation is diurnal and latitudinal. Below 75 km, seasonal and solar cycle effects are less than 5%. Accordingly, we have developed a simple climatology that depends upon local time and latitude and applied it to a model of the D region of the ionosphere. Between 60 and 70 km, atomic oxygen is important in governing the ratio of negative ions to electrons. Using the SABER O climatology along with a previously published climatology of nitric oxide based upon UARS/HALOE data, we compare our model results both to previous calculations and to a profile of electron density [e(-)] acquired by a rocket launched from Kwajalein Atoll. The model results are shown to be consistent with previously published calculations, but the comparison with the data reveals a dramatic discrepancy whereby the calculated [e(-)] is over an order of magnitude less than the observations below 65 km. The most plausible explanation involves changing the partition of negative charge between molecules such as O-2 which rapidly dissociate in sunlight versus heavier, more stable negative ions. Although observations of [e(-)] below 70 km are difficult and infrequent, more research should be invested to evaluate the pervasiveness and the seasonal, latitudinal and diurnal morphology of this model [e(-)] deficit. This may have practical implications as empirical models of the ionosphere predict a secondary maximum in HF radio absorption in the 70 km altitude region.

Place, publisher, year, edition, pages
2015. Vol. 124, 63-70 p.
Keyword [en]
Mesosphere, Ionosphere, D region
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-115992DOI: 10.1016/j.jastp.2015.01.014ISI: 000350529800008OAI: oai:DiVA.org:su-115992DiVA: diva2:802070
Note

AuthorCount:5;

Available from: 2015-04-10 Created: 2015-04-08 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Gumbel, Jörg
By organisation
Department of Meteorology
In the same journal
Journal of Atmospheric and Solar-Terrestrial Physics
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 83 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf