Change search
ReferencesLink to record
Permanent link

Direct link
Chemistry of Intermolecular Frustrated Lewis Pairs in Motion: Emerging Perspectives and Prospects
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
2015 (English)In: Israel Journal of Chemistry, ISSN 0021-2148, Vol. 55, no 2, 179-195 p.Article, review/survey (Refereed) Published
Abstract [en]

This feature article describes the chemistry in motion of frustrated Lewis pairs (FLPs). With state-of-the-art ab initio molecular dynamics (AIMD) simulations supplemented by minimum energy path (MEP) and potential energy surface (PES) calculations, we examine the binding of CO2 and the heterolytic cleavage of H-2 by a Lewis base (LB), tBu(3)P, and a Lewis acid (LA), B(C6F5)(3). We strive to uncover and understand mechanistic implications of the physical laws that govern the behavior of a LB and a LA when they react with a third species (e.g., CO2 or H-2) at finite temperature. The approximation that we necessarily must make at present is to forgo the quantization of the movement of atoms in favor of the Born-Oppenheimer molecular dynamics (BOMD), which unfold according to the classical (Newton's) laws of motion. However, strict quantum chemical theory is used to compute all of the forces that govern the dynamics of the macromolecular FLP system. Using physical reasoning and innovative computer simulations, we show that multi-scale motion is the predominant mechanistic aspect in reactions of the tBu(3)P/B(C6F5)(3) FLP, as well as, conceivably, those of other similar intermolecular FLPs. Insight achieved thus far leads to a novel activity model for intermolecular FLPs and specific predictions, which could be useful for future experimental and theoretical studies of FLP and other chemistries.

Place, publisher, year, edition, pages
2015. Vol. 55, no 2, 179-195 p.
Keyword [en]
density functional calculations, frustrated Lewis pairs, molecular dynamics, reaction mechanisms, transition states
National Category
Organic Chemistry
URN: urn:nbn:se:su:diva-115942DOI: 10.1002/ijch.201400159ISI: 000349953900004OAI: diva2:802976


Available from: 2015-04-13 Created: 2015-04-08 Last updated: 2015-04-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Pu, MaopingPrivalov, Timofei
By organisation
Department of Organic Chemistry
In the same journal
Israel Journal of Chemistry
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 8 hits
ReferencesLink to record
Permanent link

Direct link