Change search
ReferencesLink to record
Permanent link

Direct link
High-contrast imaging with Spitzer: deep observations of Vega, Fomalhaut, and is an element of Eridani
Stockholm University, Faculty of Science, Department of Astronomy.
Show others and affiliations
2015 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 574, A120Article in journal (Refereed) Published
Abstract [en]

Stars with debris disks are intriguing targets for direct imaging exoplanet searches, owing both to previous detections of wide planets in debris disk systems. and to commonly existing morphological features in the disks themselves that may be indicative of a planetary influence. Here we present observations of three of the most nearby young stars, which are also known to host massive debris disks: Vega. Fomalhaut, and c Fri. The Spitzer Space Telescope is used at a range of orientation angles for each star to supply a deep conumst through angular differential imaging combined with high contrast algorithms. The observations provide the opportunity to probe substantially colder bound planets (120-330 I() than is possible with any other technique or instrument. For Vega, sonic apparently very red candidate point sources detected in the 4.5 pm image remain to be tested for common proper motion. The images are sensitive to similar to 2 M-JUP companions at 150 AU in this system. The observations presented here represent the first search for planets around Vega using Spitzer. The upper 4.5 mu m flux limit on Fomalhaut b could be further constrained relative to previous data ln the case of is an element of Ed, planets below both the effective temperature and the mass of Jupiter could be probed from 80 AU and outward, although no such planets were found. The data sensitively probe the regions around the edges of the debris rings in the systems where planets can be expected to reside. These observations validate previous results showing that more than an order of magnitude improvement in performance in the contrast -limited regime can be acquired with respect to conventional methods by applying sophisticated high contrast techniques to space based telescopes, thanks to the high degree of PSF stability provided in this environment.

Place, publisher, year, edition, pages
2015. Vol. 574, A120
Keyword [en]
planetary systems, techniques: image processing, infrared: planetaiai systems
National Category
Astronomy, Astrophysics and Cosmology
URN: urn:nbn:se:su:diva-115936DOI: 10.1051/0004-6361/201424944ISI: 000349467000120OAI: diva2:804958


Available from: 2015-04-14 Created: 2015-04-08 Last updated: 2015-04-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Janson, Markus
By organisation
Department of Astronomy
In the same journal
Astronomy and Astrophysics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 15 hits
ReferencesLink to record
Permanent link

Direct link