Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The width of gamma-ray burst spectra
Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Astronomy.
2015 (English)In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 447, no 4, 3150-3154 p.Article in journal (Refereed) Published
Abstract [en]

The emission processes active in the highly relativistic jets of gamma-ray bursts (GRBs) remain unknown. In this paper, we propose a new measure to describe spectra: the width of the EFE spectrum, a quantity dependent only on finding a good fit to the data. We apply this to the full sample of GRBs observed by Fermi/Gamma-ray Burst Monitor (GBM) and Compton Gamma-ray Observatory/Burst and Transient Source Experiment (BATSE). The results from the two instruments are fully consistent. We find that the median widths of spectra from long and short GRBs are significantly different (chance probability < 10(-6)). The width does not correlate with either duration or hardness, and this is thus a new, independent distinction between the two classes. Comparing the measured spectra with widths of spectra from fundamental emission processes - synchrotron and blackbody radiation - the results indicate that a large fraction of GRB spectra are too narrow to be explained by synchrotron radiation from a distribution of electron energies: for example, 78 per cent of long GRBs and 85 per cent of short GRBs are incompatible with the minimum width of standard slow cooling synchrotron emission from a Maxwellian distribution of electrons, with fast cooling spectra predicting even wider spectra. Photospheric emission can explain the spectra if mechanisms are invoked to give a spectrum much broader than a blackbody.

Place, publisher, year, edition, pages
2015. Vol. 447, no 4, 3150-3154 p.
Keyword [en]
radiation mechanisms: general, methods: data analysis, gamma-ray burst: general
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:su:diva-115975DOI: 10.1093/mnras/stu2675ISI: 000350273400014OAI: oai:DiVA.org:su-115975DiVA: diva2:805053
Note

AuthorCount:2;

Available from: 2015-04-14 Created: 2015-04-08 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Axelsson, Magnus
By organisation
Department of AstronomyThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Monthly notices of the Royal Astronomical Society
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 23 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf