Change search
ReferencesLink to record
Permanent link

Direct link
Probing the gamma-ray emission from HESS J1834-087 using HESS and Fermi LAT observations
Show others and affiliations
2015 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 574, A27Article in journal (Refereed) Published
Abstract [en]

Aims. Previous observations with the High Energy Stereoscopic System (H.E.S.S.) have revealed an extended very-high-energy (VHE; E > 100 GeV) gamma-ray source, HESS J1834-087, coincident with the supernova remnant (SNR) W41. The origin of the gamma-ray emission was investigated in more detail with the H.E.S.S. array and the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. Methods. The gamma-ray data provided by 61 h of observations with H.E.S.S., and four years with the Fermi LAT were analyzed, covering over five decades in energy from 1.8 GeV up to 30 TeV. The morphology and spectrum of the TeV and GeV sources were studied and multiwavelength data were used to investigate the origin of the gamma-ray emission toward W41. Results. The TeV source can be modeled with a sum of two components: one point-like and one significantly extended (sigma(TeV) = 0.17 degrees +/- 0.01 degrees), both centered on SNR W41 and exhibiting spectra described by a power law with index Gamma(TeV) similar or equal to 2.6. The GeV source detected with Fermi LAT is extended (sigma(GeV) = 0.15 degrees +/- 0.03 degrees) and morphologically matches the VHE emission. Its spectrum can be described by a power-law model with an index Gamma(GeV) = 2.15 +/- 0.12 and smoothly joins the spectrum of the whole TeV source. A break appears in the gamma-ray spectra around 100 GeV. No pulsations were found in the GeV range. Conclusions. Two main scenarios are proposed to explain the observed emission: a pulsar wind nebula (PWN) or the interaction of SNR W41 with an associated molecular cloud. X-ray observations suggest the presence of a point-like source (a pulsar candidate) near the center of the remnant and nonthermal X-ray diffuse emission that could arise from the possibly associated PWN. The PWN scenario is supported by the compatible positions of the TeV and GeV sources with the putative pulsar. However, the spectral energy distribution from radio to gamma-rays is reproduced by a one-zone leptonic model only if an excess of low-energy electrons is injected following a Maxwellian distribution by a pulsar with a high spin-down power (> 10(37) erg s(-1)). This additional low-energy component is not needed if we consider that the point-like TeV source is unrelated to the extended GeV and TeV sources. The interacting SNR scenario is supported by the spatial coincidence between the gamma-ray sources, the detection of OH (1720 MHz) maser lines, and the hadronic modeling.

Place, publisher, year, edition, pages
2015. Vol. 574, A27
Keyword [en]
acceleration of particles, ISM: supernova remnants, ISM: clouds, cosmic rays
National Category
Astronomy, Astrophysics and Cosmology
URN: urn:nbn:se:su:diva-115931DOI: 10.1051/0004-6361/201322694ISI: 000349467000027OAI: diva2:805099


Available from: 2015-04-14 Created: 2015-04-08 Last updated: 2015-04-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Conrad, JanDickinson, Hugh J.Farnier, ChristianMeyer, ManuelWagner, Robert M.
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Astronomy and Astrophysics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 291 hits
ReferencesLink to record
Permanent link

Direct link