Change search
ReferencesLink to record
Permanent link

Direct link
Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland
Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
Show others and affiliations
2015 (English)In: The Cryosphere, ISSN 1994-0416, E-ISSN 1994-0424, Vol. 9, no 1, 123-138 p.Article in journal (Refereed) Published
Abstract [en]

Meltwater delivered to the bed of the Greenland Ice Sheet is a driver of variable ice-motion through changes in effective pressure and enhanced basal lubrication. Ice surface velocities have been shown to respond rapidly both to meltwater production at the surface and to drainage of supraglacial lakes, suggesting efficient transfer of meltwater from the supraglacial to subglacial hydrological systems. Although considerable effort is currently being directed towards improved modelling of the controlling surface and basal processes, modelling the temporal and spatial evolution of the transfer of melt to the bed has received less attention. Here we present the results of spatially distributed modelling for prediction of moulins and lake drainages on the Leverett Glacier in Southwest Greenland. The model is run for the 2009 and 2010 ablation seasons, and for future increased melt scenarios. The temporal pattern of modelled lake drainages are qualitatively comparable with those documented from analyses of repeat satellite imagery. The modelled timings and locations of delivery of meltwater to the bed also match well with observed temporal and spatial patterns of ice surface speed-ups. This is particularly true for the lower catchment (< 1000 m a.s.l.) where both the model and observations indicate that the development of moulins is the main mechanism for the transfer of surface meltwater to the bed. At higher elevations (e.g. 1250-1500 m a.s.l.) the development and drainage of supraglacial lakes becomes increasingly important. At these higher elevations, the delay between modelled melt generation and subsequent delivery of melt to the bed matches the observed delay between the peak air temperatures and subsequent velocity speed-ups, while the instantaneous transfer of melt to the bed in a control simulation does not. Although both moulins and lake drainages are predicted to increase in number for future warmer climate scenarios, the lake drainages play an increasingly important role in both expanding the area over which melt accesses the bed and in enabling a greater proportion of surface melt to reach the bed.

Place, publisher, year, edition, pages
2015. Vol. 9, no 1, 123-138 p.
National Category
Earth and Related Environmental Sciences
URN: urn:nbn:se:su:diva-116701DOI: 10.5194/tc-9-123-2015ISI: 000350555400011OAI: diva2:807369


Available from: 2015-04-23 Created: 2015-04-23 Last updated: 2015-04-23Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Clason, Caroline C.
By organisation
Department of Physical Geography and Quaternary Geology
In the same journal
The Cryosphere
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 149 hits
ReferencesLink to record
Permanent link

Direct link