Change search
ReferencesLink to record
Permanent link

Direct link
Show others and affiliations
2015 (English)In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 798, no 2, 132Article in journal (Refereed) Published
Abstract [en]

We present the first resolved near-infrared imagery of the transition disk Oph IRS 48 (WLY 2-48), which was recently observed with ALMA to have a strongly asymmetric submillimeter flux distribution. H-band polarized intensity images show a similar to 60 AU radius scattered light cavity with two pronounced arcs of emission, one from northeast to southeast and one smaller, fainter, and more distant arc in the northwest. K-band scattered light imagery reveals a similar morphology, but with a clear third arc along the southwestern rim of the disk cavity. This arc meets the northwestern arc at nearly a right angle, revealing the presence of a spiral arm or local surface brightness deficit in the disk, and explaining the east-west brightness asymmetry in the H-band data. We also present 0.8-5.4 mu m IRTF SpeX spectra of this object, which allow us to constrain the spectral class to A0 +/- 1 and measure a low mass accretion rate of 10(-8.5) M-circle dot yr(-1), both consistent with previous estimates. We investigate a variety of reddening laws in order to fit the multiwavelength spectral energy distribution of Oph IRS 48 and find a best fit consistent with a younger, higher luminosity star than previous estimates.

Place, publisher, year, edition, pages
2015. Vol. 798, no 2, 132
Keyword [en]
instrumentation: adaptive optics, instrumentation: polarimeters, planets and satellites: formation, protoplanetary disks
National Category
Astronomy, Astrophysics and Cosmology
URN: urn:nbn:se:su:diva-116558DOI: 10.1088/0004-637X/798/2/132ISI: 000350853700067OAI: diva2:807644


Available from: 2015-04-24 Created: 2015-04-21 Last updated: 2015-04-24Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Janson, Markus
By organisation
Department of Astronomy
In the same journal
Astrophysical Journal
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 9 hits
ReferencesLink to record
Permanent link

Direct link