Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
RRP6/EXOSC10 is required for the repair of DNA double-strand breaks by homologous recombination
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
2015 (English)In: Journal of Cell Science, ISSN 0021-9533, E-ISSN 1477-9137, Vol. 128, no 6, 1097-1107 p.Article in journal (Refereed) Published
Abstract [en]

The exosome acts on different RNA substrates and plays important roles in RNA metabolism. The fact that short non-coding RNAs are involved in the DNA damage response led us to investigate whether the exosome factor RRP6 of Drosophila melanogaster and its human ortholog EXOSC10 play a role in DNA repair. Here, we show that RRP6 and EXOSC10 are recruited to DNA double-strand breaks (DSBs) in S2 cells and HeLa cells, respectively. Depletion of RRP6/ EXOSC10 does not interfere with the phosphorylation of the histone variant H2Av (Drosophila) or H2AX (humans), but impairs the recruitment of the homologous recombination factor RAD51 to the damaged sites, without affecting RAD51 levels. The recruitment of RAD51 to DSBs in S2 cells is also inhibited by overexpression of RRP6-Y361A-V5, a catalytically inactive RRP6 mutant. Furthermore, cells depleted of RRP6 or EXOSC10 are more sensitive to radiation, which is consistent with RRP6/EXOSC10 playing a role in DNA repair. RRP6/EXOSC10 can be co-immunoprecipitated with RAD51, which links RRP6/EXOSC10 to the homologous recombination pathway. Taken together, our results suggest that the ribonucleolytic activity of RRP6/EXOSC10 is required for the recruitment of RAD51 to DSBs.

Place, publisher, year, edition, pages
2015. Vol. 128, no 6, 1097-1107 p.
Keyword [en]
RRP6, EXOSC10, DNA repair, Exosome, Non-coding RNA, RAD51
National Category
Cell Biology
Identifiers
URN: urn:nbn:se:su:diva-116613DOI: 10.1242/jcs.158733ISI: 000350999500005PubMedID: 25632158OAI: oai:DiVA.org:su-116613DiVA: diva2:808281
Note

AuthorCount:4;

Available from: 2015-04-28 Created: 2015-04-22 Last updated: 2017-12-04Bibliographically approved
In thesis
1. The exosome and the maintenance of genome integrity
Open this publication in new window or tab >>The exosome and the maintenance of genome integrity
2016 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The RNA exosome acts on different RNA substrates and plays important roles in RNA metabolism. The fact that short non-coding RNAs are involved in the DNA damage response led us to investigate whether the exosome plays a role in DNA repair. We have shown that the exosome catalytic subunit RRP6/EXOSC10 is recruited to DNA double-strand breaks (DSBs) in Drosophila S2 cells and human HeLa cells exposed to either ionizing radiation or I-PpoI endonuclease cleavage. DIS3, the other catalytic subunit of the nuclear exosome, is also recruited to DSBs, whereas the exosome core subunit EXOSC7 is not. Depletion of different exosome subunits does not interfere with the phosphorylation of the histone variants H2Av (Drosophila) or H2AX (humans), but depletion of RRP6/EXOSC10 impairs the recruitment of the homologous recombination factor RAD51 to the damaged sites, without affecting RAD51 levels. The recruitment of RAD51 to DSBs in S2 cells is also inhibited by overexpression of RRP6-Y361A–V5, a catalytically inactive RRP6 mutant. Furthermore, cells depleted of RRP6 or EXOSC10 are more sensitive to radiation, which is consistent with RRP6/EXOSC10 playing a role in DNA repair. RRP6/EXOSC10 can be co-immunoprecipitated with RAD51, which links RRP6/EXOSC10 to the homologous recombination pathway in animal cells. Taken together, our results suggest that a 3’-5’ ribonucleolytic activity is required for efficient DNA repair. 

Place, publisher, year, edition, pages
Stockholm: Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 2016
National Category
Cell Biology Genetics Biochemistry and Molecular Biology
Identifiers
urn:nbn:se:su:diva-129561 (URN)
Supervisors
Available from: 2017-04-21 Created: 2016-04-25 Last updated: 2017-04-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Domingo-Prim, JuditEberle, Andrea B.Visa, Neus
By organisation
Department of Molecular Biosciences, The Wenner-Gren Institute
In the same journal
Journal of Cell Science
Cell Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 37 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf