Change search
ReferencesLink to record
Permanent link

Direct link
Exploration of the active site of beta 4GalT7: modifications of the aglycon of aromatic xylosides
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Show others and affiliations
2015 (English)In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 13, no 11, 3351-3362 p.Article in journal (Refereed) Published
Abstract [en]

Proteoglycans (PGs) are macromolecules that consist of long linear polysaccharides, glycosaminoglycan (GAG) chains, covalently attached to a core protein by the carbohydrate xylose. The biosynthesis of GAG chains is initiated by xylosylation of the core protein followed by galactosylation by the galactosyltransferase beta 4GalT7. Some beta-D-xylosides, such as 2-naphthyl beta-D-xylopyranoside, can induce GAG synthesis by serving as acceptor substrates for beta 4GalT7 and by that also compete with the GAG synthesis on core proteins. Here we present structure-activity relationships for beta 4GalT7 and xylosides with modifications of the aromatic aglycon, using enzymatic assays, cell studies, and molecular docking simulations. The results show that the aglycons reside on the outside of the active site of the enzyme and that quite bulky aglycons are accepted. By separating the aromatic aglycon from the xylose moiety by linkers, a trend towards increased galactosylation with increased linker length is observed. The galactosylation is influenced by the identity and position of substituents in the aromatic framework, and generally, only xylosides with beta-glycosidic linkages function as good substrates for beta 4GalT7. We also show that the galactosylation ability of a xyloside is increased by replacing the anomeric oxygen with sulfur, but decreased by replacing it with carbon. Finally, we propose that reaction kinetics of galactosylation by beta 4GalT7 is dependent on subtle differences in orientation of the xylose moiety.

Place, publisher, year, edition, pages
2015. Vol. 13, no 11, 3351-3362 p.
National Category
Organic Chemistry
URN: urn:nbn:se:su:diva-116846DOI: 10.1039/c4ob02632bISI: 000351062700025PubMedID: 25655827OAI: diva2:809335


Available from: 2015-05-02 Created: 2015-04-29 Last updated: 2015-05-02Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Ståhle, JonasWidmalm, Göran
By organisation
Department of Organic Chemistry
In the same journal
Organic and biomolecular chemistry
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 30 hits
ReferencesLink to record
Permanent link

Direct link